RAJA KISHORE CHANDRA ACADEMY OF TECHNOLOGY **NILGIRI, BALASORE**

DEPARTMENT OF MECHANICAL ENGINEERING

LESSON PLAN

SUBJECT--STRENGTH OF MATERIAL

BRANCH-MECHANICAL

NAME OF THE FACULTY-ER.SANJAY KUMAR BEHERA

SEMESTER-3RD

SESSION-2024-25

MODULE	DATE	LECTURE NO	TOPIC TO BE COVERED			
1		1	TYPES OF LOAD, STRESSES & STRAINS, (AXIAL AND TANGENTIAL) HOOKE'S LAW			
		2	YOUNG'S MODULUS, BULK MODULUS, MODULUS OF RIGIDITY, POISSON'S RATIO, DERIVE THE RELATION BETWEEN THREE ELASTIC CONSTANT			
		3	PRINCIPLE OF SUPER POSITION, STRESSES IN COMPOSITE SECTION			
		4	STRESS STRAIN CURVE FOR DUCTILE AND BRITTLE MATERIAL			
		5	YIELD POINT, PLASTIC STAGE, ULTIMATE BREAKING STRESS PERCENTAGEELONGATION, PROOF AND WORKING STRESS			
		6	FACTORS OF SAFETY, POISON'S RATIO, THERMAL STRESS AND STRAIN, INTRODUCTION TO PRINCIPAL STRESSES			
		7	RESILIENCE STRAIN ENERGY, RESILIENCE, PROOF RESILIENCE ANDMODULUS OF RESILIENCE			
		8	STRESS DUE TO GRADUAL ,SUDDEN AND FALLING LOAD			
		9	SIMPLE PROBLEMS ON ABOVE.			
		10	SIMPLE PROBLEMS ON ABOVE.			
2		11	DEFINITION OF HOOP AND LONGITUDINAL STRESS, STRAIN			
		12	DERIVATION OF HOOP STRESS,			
		13	DERIVATION OF LONGITUDINAL STRESS,			
		14	DERIVATION OF LONGITUDINAL STRAIN AND VOLUMETRIC STRAIN			
		15	COMPUTATION OF THE CHANGE IN LENGTH,			
		16	COMPUTATION OF THE CHANGE IN DIAMETER AND VOLUME			
		17	SIMPLE PROBLEMS ON ABOVE			
		18	SIMPLE PROBLEMS ON ABOVE			
3		19	DETERMINATION OF PRINCIPAL PLANES AND PRINCIPAL STRESS			
		20	ANALYTICAL METHOD FOR THE STRESSES ON AN OBLIQUE SECTIONOF A BODY			
		21	SIGN CONVENTION FOR ANALYTICAL METHOD			
		22	STRESSES ON AN OBLIQUE PLANE OF A BODY SUBJECTED TO A DIRECT STRESS IN ONE PLANE			
		23	STRESSES ON AN OBLIQUE PLANE OF A BODY SUBJECTED TO A DIRECT STRESS IN TWO MUTUALLY PERPENDICULAR DIRECTION			
		24	STRESSES ON AN OBLIQUE PLANE OF A BODY SUBJECTED TO A DIRECT STRESS IN TWO MUTUALLY PERPENDICULAR DIRECTION ACCOMPANIEDBY A SIMPLE SHEAR STRES			
		25	MAXIMUM SHEAR STRESS USING MOHR'S CIRCLE			
		26	SIMPLE PROBLEMS ON ABOVE.			
		27	SIMPLE PROBLEMS ON ABOVE.			
		28	PREVIOUS SEMESTER QUESTION DISCUSSION			
4		29	TYPES OF BEAM AND LOAD			

	30	BENDING MOMENT AND SHEARING FORCE CONCEPT OF VARIOUS TYPESOF BEAMS AND LOADING
	31	CONCEPT OF END SUPPORTS, HINGED AND FIXED, CONCEPT OF BENDING MOMENT AND SHEAR FORCE
	32	B.M AND S.F DIAGRAM FOR CANTILEVER BEAM WITH POINT LOAD
	33	B.M. AND S.F DIAGRAM FOR SIMPLY SUPPORTED BEAM WITH POINT LOAD
	34	B.M AND S.F DIAGRAM OF CANTILEVER AND SIMPLY SUPPORTEDBEAMS WITH U.D.L & POINT OF CONTRAFLEXURE
	35	B.M. AND S.F DIAGRAM FOR SIMPLY SUPPORTED BEAM WITH U.D.L
	36	B.M. AND S.F DIAGRAM FOR OVER HANGING BEAM WITHPOINT LOAD
	37	B.M. AND S.F DIAGRAM FOR OVER HANGING BEAM WITH U.D.L
	38	SIMPLE PROBLEMS ON ABOVE.
	39	SIMPLE PROBLEMS ON ABOVE.
	40	PREVIOUS SEMESTER QUESTION DISCUSSION
5	41	BENDING STRESS CONCEPTS OF BENDING STRESSES
	42	THEORY OF SIMPLE BENDING, DERIVATION OF BENDING EQUATION
	43	CONCEPT OF MOMENT OF RESISTANCE
	44	BENDING STRESS DIAGRAM, SECTION MODULUS.
	45	SECTION MODULUS FOR CIRCULAR AND RECTANGULAR BEAMS
	46	SIMPLE PROBLEMS ON ABOVE.
	47	SIMPLE PROBLEMS ON ABOVE.
6	48	CONCEPT OF COLUMN, MODES OFFAILURE, TYPES OF COLUMNS, MODES OF FAILURE OF COLUMN
	49	BUCKLING LOAD, CRUSHING LOAD, SLENDERNESS RATIO
	50	EFFECTIVE LENGTH, END RESTRAINTS
	51	FACTOR EFFECTING STRENGTH OF A COLUMN, STRENGTH OF COLUMNBYEULER FORMULA WITHOUT DERIVATION
	52	SIMPLE PROBLEMS ON ABOVE.
	53	SIMPLE PROBLEMS ON ABOVE.
	54	PREVIOUS SEMESTER QUESTION DISCUSSION
7	55	ASSUMPTION OF PURE TORSION
	56	THE TORSION EQUATION FOR SOLID AND HOLLOW CIRCULAR SHAFT
	57	COMPARISON BETWEEN SOLID AND HOLLOW SHAFT SUBJECTEDTOPURE TORSION
	58	SIMPLE PROBLEMS ON ABOVE.
	59	DOUBT CLEARING CLASS
	60	DOUBT CLEARING CLASS
	61	CLASS TEST & DISCUSSION ON QUESTION
	62	DISCUSSION OF SELECTED PROBABLE QUESTIONS
	63	DISCUSSION OF SELECTED PROBABLE QUESTIONS
	64	PREVIOUS SEMESTER QUESTION DISCUSSION
	65	PREVIOUS SEMESTER QUESTION DISCUSSION
		•

SIGNATURE OF FACULTY MEMBER

COUNTER SIGNATURE OF H.O.D