RAJAKISHORE CHANDRA ACADEMY OF TECHNOLOGY NILGIRI,BALASORE(ODISHA)

LESSONPLAN

SUBJECT:Th1.ENGINEERINGMATHEMATICS-III

CHAPTERWISEDISTRIBUTIONOFPERIODS

SI.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	ComplexNumbers	6	6
2	Matrices	4	4
3	DifferentialEquations	10	10
4	Laplacetransforms	12	12
5	FourierSeries	12	12
6	NumericalMethods	4	4
7	Finitedifference&interpolation		12
	TOTAL	60	60

Discipline:	Semester: 3RD	NameoftheTeachingFaculty:MISS SUMITRA SAHU		
Week	ClassDay	Theory/Practical Topics		
1ST	1 st	1.Complex Numbers Realand Imaginarynumbers		
	2 nd	1.2 Complexnumbers, conjugate complex numbers, Modulus and Amplitude of a complex number		
	3 rd	GeometricalRepresentationofComplex Numbers. PropertiesofComplexNumbers		
	4 th	1.5Determination of three cuberoots of unity and their properties.		
	1 st	1.6 DeMoivre's theorem		
	2 nd	1.7 Solveproblemson1·1 -1·6		
2ND	3 rd	Definerankofa matrix. Performelementary rowtransformations to determine the rankofa		
	4 th	2.3.State Rouche'stheorem for consistencyof a systemof linear equations in unknowns.		
	1 st	2.4.Solve equationsinthree unknownstestingconsistency		
	2 nd	2.5.Solve problemson 2.1 –2.4		
3RD	3 rd	3.LinearDifferential Equations DefineHomogeneousandNon–HomogeneousLinearDifferentialEquations with constant coefficients with examples		
	4 th	3.2.Find generalsolution oflinear DifferentialEquationsintermsof C.F.andP.I.		
	1 st	3.2.Find generalsolution oflinear DifferentialEquationsintermsof C.F.andP.I.		
4TH	2 nd	3.3.Derive rulesforfindingC.F.AndP.I.in terms of operator D, excluding.		
	3 rd	3.3.Derive rulesforfindingC.F.AndP.I.in terms of operator D, excluding.		
	4 th	3.4.Definepartial differential equation(P.D.E)		
	1 st	3.5. Form partial differential equations by eliminating arbitrary constants and arbitrary functions		
5TH	2 nd	3.5. Form partial differential equations by eliminating arbitrary constants and arbitrary functions		
	3 rd	3.6.Solvepartial differentialequations of the form Pp+Qq= R		
	4 th	3.7.Solve problemson 3.1- 3.6		
6ТН	1 st	4.LaplaceTransforms Define Gamma function and find.		
	2 nd	4.2.Define Laplace Transformof afunction and Inverse LaplaceTransform .		
	3 rd	4.2.Define Laplace Transformof afunction and Inverse LaplaceTransform .		
	4 th	4.2.Define Laplace Transformof afunction and Inverse LaplaceTransform .		
	1 st	4.3.Derive L.T.of standard functionsand explain existence conditionsof L.T.		

7TH	2 nd	4.3.Derive L.T.of standard functionsand explain existence conditions of L.T.		
	3 rd	4.4.Explain linear, shifting property of L.T.		
	4 th	4.5.Formulate L.T.of derivatives, integrals, multiplication by and division by.		
	1 st	4.5.Formulate L.T.of derivatives, integrals, multiplication by and division by.		
8TH	2 nd	4.6.Derive formulae of inverse L.T. and explain method of partialfractions .		
8111	3 rd	4.6.Derive formulae of inverse L.T. and explain method of partialfractions .		
	4 th	4.7.solve problemon 4.1- 4.6		
	1 st	5.Fourier Series Define periodic functions		
OTIL	2 nd	5.2.State Dirichlet'sconditionfor the Fourier expansion of afunction and it's Convergence		
9TH	3 rd	5.2.State Dirichlet'sconditionfor the Fourier expansionof afunction and it's Convergence		
	4 th	5.2.State Dirichlet'sconditionfor the Fourier expansion of afunction and it's Convergence		
	1 st	5.3.ExpressperiodicfunctionF(X)satisfyingDirichlet'sconditionsasaFourier series.		
10TH	2 nd	5.3.ExpressperiodicfunctionF(X)satisfyingDirichlet'sconditionsasaFourier series.		
	3 rd	5.4.StateEuler's formulae		
	4 th	5.5.Define Even and Oddfunctionsand find Fourier Series in		
	1 st	5.5.Define Even and Oddfunctionsand find Fourier Series in		
11TH	2 nd	5.6.Obtain F.Sof continuous functions and functions having points of Discontinuity		
	3 rd	5.6.Obtain F.Sof continuous functions and functions having points of Discontinuity		
	4 th	5.7.Solve problemson 5.1 –5.6		
	1 st	6. Numerical Methods Appraise limitation of an alytical methods of solution of Algebraic Equations.		
12TH	2 nd	Derive Iterative formulaforfindingthe solutionsofAlgebraicEquationsby : Bisection method Newton-Raphsonmethod		
	3 rd	Derive Iterative formulaforfindingthe solutionsofAlgebraicEquationsby : Bisection method Newton-Raphsonmethod		
	4 th	6.3.solve problemson 6.2		
	1 st	7.Finitedifferenceandinterpolation Explainfinite difference and form table of forward and backwarddifference		
13TH	2 nd	7.2.Define shift Operator and establish relation between& difference operator.		

	3 rd	7.3.Derive Newton's forward and backward interpolation formula for equal Intervals
	4 th	7.4.StateLagrange's interpretation formula forunequal intervals.
14TH	1 st	Explainnumericalintegrationand state: Newton'sCote's formula
	2 nd	Newton'sCote's formula
	3 rd	7.5.2.Trapezoidalrule
	4 th	7.5.2.Trapezoidalrule
15TH	1 st	7.5.2.Trapezoidalrule
	2 nd	7.5.3.Simpson's1/3rdrule
	3 rd	7.5.3.Simpson's1/3rdrule
	4 th	7.6.Solve problemson 7.1- 7.5

Sign.OfFaculty Sign.OfHOD