RAJAKISHORE CHANDRA ACADEMY OF TECHNOLOGY(RKCAT) NILGIRI,BALASORE

LESSONPLAN

SUBJECT:Th3.ENGINEERINGMATHEMATICS-I

	CHAPTERWISEDISTRIBUTIONOFPERIODS		
SI.No.	Name of the chapter as per the Syllabus	No.of Periods asper the Syllabus	No. of periods actually needed
1	TRIGONOMETRY	21	21
2	DIFFERENTIAL CALCULUS	21	21
3	COMPLEX NUMBER	6	6
4	PARTIAL FRACTION AND PERMUTATION	12	12
	TOTAL	60	60

Discipline:CO MMONTO ALL	Semester:1st	Nameof the Teaching Faculty:MISS SUMITRA SAHU
Week	Class Day	Theory/PracticalTopics
	1 st	TRIGONOMETRYa)Introduction of trigonometry
	2 nd	b)concept of angles
1ST	3 rd	c)measurement of anglesin degrees,gradesand radians
	4 th	c)measurement of anglesin degrees,gradesand radians
	5 th	d)conversion of degree
	1 st	d)conversion of degree
	2 nd	e)T-ratio of allied angles with outproof
2ND	3 rd	e)T-ratio of allied angles with outproof
	4 th	F)sum ,difference formulae and their application
	5 th	F)sum ,difference formulae and their application
	1 st	F)sum ,difference formulae and their application
	2 nd	g)product formulae (transformation of product to sum ,difference)
3RD	3 rd	g)product formulae (transformation of product to sum ,difference)
	4 th	g)product formulae (transformation of product to sum ,difference)
	5 th	T-ratio of multiple angles

4ТН	1 st	T-ratio of multiple angle
	2 nd	T-ratioof an sub multiples angles (2a\3A,A\2)
	3 rd	T-ratioof an sub multiples angles (2a\3A,A\2)
	4 th	Graph of different trigono metric function as per syllabus
	5 th	Graph of different trigono metric function as per syllabus
5TH	1 st	Graph of different trigono metric function as per syllabus
	2 nd	DERIVATIVES a)Derivativeof afunctionata point
	3 rd	DERIVATIVES a)Derivativeof afunctionata point
	4 th	b)Algebraof derivative
	5 th	c)Derivativeofstandard functions
6ТН	1 st	c)Derivativeofstandard functions
	2 nd	d)Derivativeofcompositefunction(ChainRule)
	3 rd	d)Derivativeofcompositefunction(ChainRule)
	4 th	e)Methodsofdifferentiation of
	5 th	i)Parametricfunction ii)Implicitfunction

7 TH	1 st	
		i)Parametricfunction ii)Implicitfunction
	2 nd	iii)Logarithmicfunction iv)afunctionwithrespect to
		anotherfunction
	3 rd	iii)Logarithmicfunction iv)afunctionwithrespect to
		anotherfunction
	4 th	iii)Logarithmicfunction iv)afunctionwithrespect to
		anotherfunction
	5 th	
		f)Applicationsof Derivative
	_ st	
	1 st	f)Applicationsof Derivative
	2 nd	i)SuccessiveDifferentiation(uptosecondorder) ii)Partial
	2	Differentiation (function of two variables up to second order)
8TH	3 rd	i)SuccessiveDifferentiation(uptosecondorder) ii)Partial
0111	3	Differentiation (function of two variables up to second order)
	4 th	
		g)Problemsbasedonabove
	5 th	i)SuccessiveDifferentiation(uptosecondorder) ii)Partial
		Differentiation(functionoftwovariablesuptosecondorder)
	1 st	i)SuccessiveDifferentiation(uptosecondorder) ii)Partial
		Differentiation(functionoftwovariablesuptosecondorder)
	2 nd	a) Dealth and a sandaria barra
0711		g)Problemsbasedonabove
9TH	3 rd	Complex Numbers Realand Imaginarynumbers
		1.2 Complexnumbers, conjugate complex numbers, Modulus and Amplitude of a
		complex number
	5 th	GeometricalRepresentationofComplex Numbers.
	5	Properties of Complex Numbers
		1.5Determination of three cuberoots of unity and their properties.
	1 st	
		A C D. M. C. valentha a varia
	2 nd	1.6 DeMoivre's theorem
10TH	3 rd	1.7 Salvanrahlamsan1.1.1 C
		1.7 Solveproblemson1·1 -1·6
	4 th	
		Partial fraction a)definition of partial fraction proper or improper
		fraction

	5 th	b)de definition of partial fraction
	1 st	c) to resolve proper frsction into partial fraction with denominator containing non repeated liner fractor
11TH	2 nd	c) to resolve proper frsction into partial fraction with denominator containing non repeated liner fractor
	3 rd	Repeated linear fractorand irreduciblenon repeating quadratic factor
	4 th	To resolve improper fraction into fraction into partial fraction
	5 th	Permutation and combination : value of Npr and Ncr
	1 st	BIONOMIAL THEOREM:a0bionomial theorem for positive integral index
12TH	2 nd	b)bionomial theorem for anny index
	3 rd	c)first and second bionomial approximation with application to engineering problems
	4 th	c)first and second bionomial approximation with application to engineering problems
	5 th	c)first and second bionomial approximation with application to engineering problems