LECTURE NOTES ON DIGITAL ELECTRONICS &
MICROPROCESSOR

PREPARED BY -
ER. JYOTISMITA GHADEI

VISION OF THE DEPARTMENT-

+ To be a center of excellence in the field of E&TC Engineering by
providing quality technical education.

MISSION OF THE DEPARTMENT-

To create an excellent teaching learning environment for making the students
acquire the knowledge needed.

To inculcate self-learning attitude, entrepreneurial skill.

To impart knowledge required for recent and advanced engineering.

PROGRAM EDUCATIONAL OBJECTIVE (PEO)-

Recognize and apply the acquired fundamental knowledge in basic science and
mathematics in solving E&TC Engineering problems.

To gain employment in public and private sector organization.

Involve in higher study and career enhancement.

PROGRAM SPECIFIC OUTCOME (PSO)-

To design, test and troubleshoot the simple analog and digital circuits.

An ability to solve complex E&TC Engineering problems using various tools i.e.
hardware and software.

To pursue higher studies or get placed in various industries.

COURSE OUTCOME (CO)-
After the completion of the course the students will be able to
Apply the knowledge of Boolean algebra and K-map for logic function minimization.

Design combinational circuits and sequential circuits and implement them with
logic gates.

Implement logic gates by using different logic family.

Apply the fundamental knowledge of Analog and Digital Electronics for analog
version and vice versa.

Analyze and apply the nomenclature and technology of memory devices and
various types registers in digital circuits for real world application.

TH.3 DIGITAL ELECTRONICS & MICROPROCESSOR

Name of the Course: Diploma in Electrical Engineering

Course code: Th.3 Semester 5ih
Total Period: 75 Examination 3 Hrs.
Theory periods: 5P / week Internal Assessment: 20
Tutorial: End Semester Examination: 80
Maximum marks: 100

A. RATIONALE

The tremendous power and usefulness of digital electronics can be seen from the wide
variety of industrial and consumer products, such as automated industrial machinery,
computers, microprocessors, pocket calculators, digital watches and clocks, TV games, etc.,
Which are based on the principles of digital electronics? The years of applications of digital
electronics have been increasing every day. In fact, digital systems have invaded all walks of
life. This subject will very much helpful for student to understand clearly about the
developmental concept of digital devices.

B. OBJECTIVES
On comprehend of the subject, the student will able to

Comprehend the systems and codes.
Familiar with logic gates.
Realize logic expressions using gates.
Construct and verify the operation of arithmetic & logic circuits 5.
Understand and appreciate the relevance of combinational circuits.
Know various logic families & flops.
Architecture & different instructions of 8085 microprocessor.
8. Assembly language programs and write programs & functions of the interfacing chips
like 8255, 8259, 8259 etc.
C. TOPIC WISE DISTRIBUTION OF PERIODS
SI. No. Topics Periods

hrwnNPRE

No

Basics Of Digital Electronics 15

Combinational Logic Circuits 15

Sequential Logic Circuits 15

8085 Microprocessor 20

Interfacing And Support Chips 10

Total 75

a0

COURSE CONTENT IN TERMS OF SPECIFIC OBJECTIVES
1. BASICS OF DIGITAL ELECTRONICS

11
1.2
1.3
14
15

1.6
1.7
1.8
1.9
1.10
1.11

2.

Binary, Octal, Hexadecimal number systems and compare with Decimal system.
Binary addition, subtraction, Multiplication and Division.

1's complement and 2‘s complement numbers for a binary number
Subtraction of binary numbers in 2‘s complement method.

Use of weighted and Un-weighted codes & write Binary equivalent number
number in 8421, Excess-3 and Gray Code and vice-versa.

Importance of parity Bit.

Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.
Realize AND, OR, NOT operations using NAND, NOR gates.

Different postulates and De-Morgan‘s theorems in Boolean algebra.

Use Of Boolean Algebra For Simplification Of Logic Expression

for a

Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And POS Logic Expression

Using K-Map.

COMBINATIONAL LOGIC CIRCUITS

2.1 Give the concept of combinational logic circuits.

2.2 Half adder circuit and verify its functionality using truth table.

2.3 Realize a Half-adder using NAND gates only and NOR gates only.

2.4 Full adder circuit and explain its operation with truth table.

2.5 Realize full-adder using two Half-adders and an OR — gate and write truth table

2.6

Full subtractor circuit and explain its operation with truth table. 2.7 Operation of 4 X
1 Multiplexers and 1 X 4 demultiplexer 2.8 Working of Binary-Decimal Encoder & 3

X 8 Decoder.

2.9 Working of Two bit magnitude comparator.

3.

3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
4.

SEQUENTIAL LOGIC CIRCUITS

3.1 Give the idea of Sequential logic circuits.

3.2 State the necessity of clock and give the concept of level clocking and edge triggering,

3.3 Clocked SR flip flop with preset and clear inputs.

Construct level clocked JK flip flop using S-R flip-flop and explain with truth table

Concept of race around condition and study of master slave JK flip flop.

Give the truth tables of edge triggered D and T flip flops and draw their symbols.

Applications of flip flops.

Define modulus of a counter

4-bit asynchronous counter and its timing diagram.

Asynchronous decade counter.

4-bit synchronous counter.

Distinguish between synchronous and asynchronous counters.

State the need for a Register and list the four types of registers.

Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop.
8085 MICROPROCESSOR

4.1 Introduction to Microprocessors, Microcomputers

4.2 Architecture of Intel 8085A Microprocessor and description of each block.
4.3 Pin diagram and description.

4.4 Stack, Stack pointer & stack top

4.5 Interrupts

4.6 Opcode & Operand,

4.7 Differentiate between one byte, two byte & three byte instruction with example.
4.8 Instruction set of 8085 example
4.9 Addressing mode
4 .10 Fetch Cycle, Machine Cycle, Instruction Cycle, T-State
4.11 Timing Diagram for memory read, memory write, 1/O read, 1/0 write
4.12 Timing Diagram for 8085 instruction
4.13 Counter and time delay.
4, 14 Simple assembly language programming of 8085.

5. INTERFACING AND SUPPORT CHIPS

5.1 Basic Interfacing Concepts, Memory mapping & I/O mapping
5.2 Functional block diagram and description of each block of

Programmable peripheral interface Intel 8255,
5.3 Application using 8255: Seven segment LED display, Square wave
generator,

Traffic light Controller

DIGITAL ELECTRONICS AND MICROPROCESSOR

5™ SEMESTER ELECTRICAL ENGINEERING

UNIT-1BASICS OF DIGITAL ELECTRONICS
Introduction to Digital Electronics:

+ Digital electronics deals with the electronic manipulation of numbers, or with the manipulation
of varying quantities by means of numbers.

* Because it is convenient to do so, today’s digital systems deal only with the numbers ‘zero’
and ‘one’, because they can be represented easily by ‘off and ‘on’ within a circuit.

* This is not the limitation it might seem, for the binary system of counting can be used to
represent any number that we can represent with the usual decimal (0 to 9) system that we
use in everyday life.

» Digital Electronics is very important in today's life because if digital circuits compared to analog
circuits are that signals represented digitally can be transmitted without degradation due to
noise.

Advantages of Digital Circuits

» High accuracy and programmability

+ Storage of digital data is easy

* Immune to noise

* Can be implemented in the form of integrated circuits (ICs)

» Greater reliability and flexibility

Disadvantages of Digital Circuits

* Expensive

* Operate on digital signals only

» Complex circuitry

Applications of Digital Circuits

* Mobile Phones, Calculators and Digital Computers

* Radios and communication Devices

» Signal Generator

* Smart Card

» Cathode Ray Oscilloscope (CRO)

* Analog to digital converters (ADC)

+ Digital to analog converters (DAC), etc.

Number system:

* A number system is defined as a system of writing to express numbers.

+ Itis the mathematical notation for representing numbers of a given set by using digits or other
symbols in a consistent manner.

» It provides a unique representation of every number and represents the arithmetic and
algebraic structure of the figures.

+ It also allows us to operate arithmetic operations like addition, subtraction and division. The
value of any digit in a number can be determined by:

* The digit

* Its position in the number

« The base of the number system Types of number system:

There are various types of number systems in mathematics. The four most common number system
types are:

* Decimal number system (Base- 10)

* Binary number system (Base- 2)

* Octal number system (Base-8)

* Hexadecimal number system (Base- 16) A number N in base or radix ‘r can be written as:

(No=dnidnz--------dido.d1dz------ - dum

In the above, dn-1 to dO is the integer part, then follows a radix point, and then d-1 to d-m is the
fractional part.

Dn-1= Most significant bit (MSB) d-m

= Least significant bit (LSB)

Decimal number system:

The base or radix of Decimal number system is 10. So, the numbers ranging from 0 to 9 are used
in this number system. Mathematically, we can write it as

1358.246 = (1 x 10%) + (3 x 10?) + (5 x 10%) + (8 x 10°% + (2 x 10%) +(4 x 102) + (6 x 10®)

Binary number system:

All digital circuits and systems use this binary number system. The base or radix of this number
system is 2. So, the numbers 0 and 1 are used in this number system.

Mathematically, we can write it as

1101.011=(1x 2%+ (1x2°)+ (0x 2 + (1 x 29 + (0 x 21) +(1 x 22) + (1 x 273)

Octal number system:

The base or radix of octal number system is 8. So, the numbers ranging from 0 to 7 are used in
this number system.

Mathematically, we can write it as

1457.236 = (1 x 8% + (4 x8%) + (5x8Y) + (7 x 8% + (2 x81) +(3x8?) + (6 x 83

Hexadecimal number system:

The base or radix of Hexa-decimal number system is 16. So, the numbers ranging from 0 to 9
and the letters from A to F are used in this number system. The decimal equivalent of
Hexadecimal digits from A to F are 10 to 15.

Mathematically, we can write it as

1A05.2C4 = (1 x 163 + (10 x 16%) + (0 x 16%) + (5 x 16°) + (2 x 161) +(12 x 162) + (4 x 1673)

Conversion from one system to another number system: Decimal

number system to other number system:

If the decimal number contains both integer part and fractional part, then convert both the parts
of decimal number into another base individually. Steps for converting the decimal number
into its equivalent number of any base ‘r’-

« Do division of integer part of decimal number and successive quotients with base ‘r’
and note down the remainders till the quotient is zero. Consider the remainders in
reverse order to get the integer part of equivalent number of base ‘r'. That means, first
and last remainders denote the least significant digit and most significant digit
respectively.

* Do multiplication of fractional part of decimal number and successive fractions with
base ‘r and note down the carry till the result is zero or the desired number of
equivalent digits is obtained. Consider the normal sequence of carry in order to get the
fractional part of equivalent number of base ‘r’.

Decimal to binary:
Example- (152.25)1,Step

1
Divide the number 152 and its successive quotients with base 2.

Operation Quotient Remainder

152/2 76 0 (LSB)
38 0

76/2

38/2 19 0
9 1

19/2

9/2 4 1
2 0

4/2

2/2 1 0

1/2 0 1(MSB)

(152)10= (10011000); Step 2:
Now, perform the multiplication of 0.27 and successive fraction with base 2.

Operation Result carry

0.25x2 0.50 0

0.50x2
(0.25)10= (.01),

Decimal to octal:

Example- (152.25)10Step

1

Divide the number 152 and its successive quotients with base 8.

Operation Quotient Remainder
152/8 19 0
19/8 2 3
2/8 0 2
(182), =(230),
Step 2:
Now perform the multiplication of 0.25 and successive fraction with base 8.
Operation Result carry
0.25x8 0 2

(0-25)10=(2)8

So, the octal number of the decimal number 152.25 is 230.2 Decimal to
hexadecimal:

Example- (152.25)0 Step 1:

Divide the number 152 and its successive quotients with base 8.

Operation Quotient Remainder

152/16 9 8
9/16 0 9
(152)10=(98)16
Step 2:

Now perform the multiplication of 0.25 and successive fraction with base 16.

Operation Result carry

0.25x16 0 4

(0.25)10 = (4)15

So, the hexadecimal number of the decimal number 152.25 is 230.4. Binary

to other number system: Binary to decimal:

The process starts from multiplying the bits of binary number with its corresponding positional weights.
And lastly, we add all those products.

Example- (10110.001),

(10110.001),=(1%2%)+(0x23)+(1x22)+(1x21)+(0x2%)+(0x21)+(0x22)+(1x23)

(10110.001)2=(1x16)+(0x8)+(1x4)+(1x2)+(0x1)+(0x 12)+(0x 14)+(1x18)

(10110.001),=16+0+4+2+0+0+0+0.12

5 (10110.001),=(22.125);0Binary to

octal:

In a binary number, the pair of three bits is equal to one octal digit. Two steps to convert a binary
number into an octal number which are as follows:

* Inthe first step, we have to make the pairs of three bits on both sides of the binary point. If
there will be one or two bits left in a pair of three bits pair, we add the required number of
zeros on extreme sides.

* In the second step, we write the octal digits corresponding to each pair. Example-
(111110101011.0011),

1. Firstly, we make pairs of three bits on both sides of the binary point. 111 110

101 011.001 1

On the right side of the binary point, the last pair has only one bit. To make it a complete pair of
three bits, we added two zeros on the extreme side.

111 110 101 011.001 100 2. Then, we wrote

the octal digits, which correspond to each pair.

(111110101011.0011), = (7653.14)s Binary to hexadecimal:

The base numbers of binary and hexadecimal are 2 and 16, respectively. In a binary number,
the pair of four bits is equal to one hexadecimal digit. There are also only two steps to convert

a binary number into a hexadecimal number which are as follows:

1. In the first step, we have to make the pairs of four bits on both sides of the binary point. If
there will be one, two, or three bits left in a pair of four bits pair, we add the required number

of zeros on extreme sides.

2. In the second step, we write the hexadecimal digits corresponding to each pair. Example-
(10110101011.0011)2
1. Firstly, we make pairs of four bits on both sides of the binary point.

1111010 1011.0011

On the left side of the binary point, the first pair has three bits. To make it a complete pair of four
bits, add one zero on the extreme side.

0111 1010 1011.0011

2. Then, we write the hexadecimal digits, which correspond to each pair.
(011110101011.0011)2=(7AB.3)160ctal to other number system:

Octal to decimal:

The process starts from multiplying the digits of octal numbers with its corresponding positional
weights. And lastly, we add all those products. Example- (152.25)g Step 1:

We multiply each digit of 152.25 with its respective positional weight, and last, we add the products
of all the bits with its weight.

(152.25)5=(1x82)+(5x8%)+(2x8%)+(2x81)+(5x82)

(152.25)5=64+40+2+(2%18)+(5%1/64)

(152.25)5=64+40+2+0.25+0.078125

(152.25)s=106.328125

So, the decimal number of the octal number 152.25 is 106.3281250ctal to

binary:

The process of converting octal to binary is the reverse process of binary to octal. We write
the three bits binary code of each octal number digit. Example- (152.25)s We write the three-
bit binary digit for 1, 5, 2, and 5.

(152.25)s=(001101010.010101)2

So, the binary number of the octal number 152.25 is (001101010.010101).Octal to
hexadecimal:

For converting octal to hexadecimal, there are two steps required to perform, which are as follows:

1.In the first step, we will find the binary equivalent of number.

2.Next, we have to make the pairs of four bits on both sides of the binary point. If there will

be one, two, or three bits left in a pair of four bits pair, we add the required number of zeros on
extreme sides and write the hexadecimal digits corresponding to each pair. Example-
(152.25)sStep 1:

We write the three-bit binary digit for 1, 5, 2, and 5.

(152.25)s =(001101010.010101)>

So, the binary number of the octal number 152.25 is (001101010.010101),Step 2:

1. Now, we make pairs of four bits on both sides of the binary point.

0 0110 1010.0101 01

On the left side of the binary point, the first pair has only one digit, and on the right side, the

last pair has only two-digit. To make them complete pairs of four bits, add zeros on extreme

sides.

0000 0110 1010.0101 0100

2. Now, we write the hexadecimal digits, which correspond to each pair.

(0000 0110 1010.0101 0100)2 = (6A.54)16

Hexadecimal to other number system:

Hexadecimal to decimal:

The process of converting hexadecimal to decimal is the same as binary to decimal. The

process starts from multiplying the digits of hexadecimal numbers with its corresponding

positional weights. And lastly, we add all those products.

Let's take an example to understand how the conversion is done from hexadecimal to decimal.
Example- (152A.25)16Step

1
We multiply each digit of 152A.25 with its respective positional weight, and last we add the products
of all the bits with its weight.

(152A.25)16=(1x163)+(5x16%)+(2x16%)+(Ax16°)+(2x161)+(5%x167?)
(152A.25)16=(1x4096)+(5%256)+(2x16)+(10x1)+(2x167)+(5%x167?)

(152A.25)16=4096+1280+32+10+(2x1/16)+(5x1/256)

(152A.25)16=5418+0.125+0.125

(152A.25)16=5418.14453125

So, the decimal number of the hexadecimal number 152A.25 is 5418.14453125Hexadecimal
to binary:

The process of converting hexadecimal to binary is the reverse process of binary to hexadecimal. We
write the four bits binary code of each hexadecimal number digit. Example

- (152A.25)16

We write the four-bit binary digit for 1, 5, A, 2, and 5.

(152A.25)16= (0001 0101 0010 1010.0010 0101),

So, the binary number of the hexadecimal number 152.25 is (1010100101010.00100101)>

Binary equivalent Hexadecimal

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MmO E(OV|R(N|O|V[_WIN|IO

Hexadecimal to octal:
For converting hexadecimal to octal, there are two steps required to perform, which are as follows:

1. Inthe first step, we will find the binary equivalent of the hexadecimal number.

2. Next, we have to make the pairs of three bits on both sides of the binary point. If there will be
one or two bits left in a pair of three bits pair, we add the required number of zeros on extreme
sides and write the octal digits corresponding to each pair.

Example- (152A.25)16Step
1
We write the four-bit binary digit for 1, 5, 2, A, and 5.
(152A.25)16= (0001 0101 0010 1010.0010 0101)>
So, the binary number of hexadecimal number 152A.25 is (0011010101010.010101),Step
2:
3. Then, we make pairs of three bits on both sides of the binary point.
001 010 100 101 010.001 o001 o010
4. Then, we write the octal digit, which corresponds to each pair.

(001010100101010.001001010), = (12452.112)s

So, the octal number of the hexadecimal number 152A.25 is 12452.112Arithmetic operation:
Two types of operation that are performed on binary data include arithmetic and logic
operations. Basic arithmetic operations include addition, subtraction, multiplication and
division.

Binary addition:

There are four rules for binary addition:

Input A Input B Sum (S) Carry (C)
A+-B
o o o (0]
(o] 1 1 o
1 (@] 1 o
1 1 o 1
Example-
0011010 + 001100 =00100110 173 carry

0011010 =261
+0001100 =120

010011 0 =380

Binary subtraction:
There are four rules for binary subtraction:

Input A Input B Subtract Borrow (B)

s)
A-B

(0] (0] [0} o

o 1 o 1

a (e} 1 o

1 i | o o

Example-
0011010 - 001100 =00001110 4 A borrow

0033010 =260
-0001100 =120

0001110 =140

Binary multiplication:
There are four rules of binary multiplication.

Input A Input B Multiply
()
AxE
o o o
o 1 o
1 o o
1 1 1
Example:
0011010 x 001100 =100111000
0011010 =26
x0001100 =120

O0OO0OO0OOCOO
O0OO0OO0OOO0OO
0011010
0011010
010011131000 = 31210

Binary division:
There are four parts in any division: Dividend, Divisor, quotient, and remainder.

Iinput A Input B Divide (D)
Al
o o Not defined
o < | o
1 o Not defined
1 1 1
Example-
101010 JOOO110 = 000111
> Rcs o B = 710
ooco110)4‘0 1010 =aAa2:0
= o P2 5 = 6:10
2DO 1
-1 1 0
2310
-1 10
[e]

Signed binary number representation:

* In mathematics, positive numbers (including zero) are represented as unsigned numbers.

* Thatis, we do not put the +ve sign in front of them to show that they are positive numbers.

* However, when dealing with negative numbers we do use a -ve sign in front of the number to
show that the number is negative in value and different from a positive unsigned value, and
the same is true with signed binary numbers.

* However, in digital circuits there is no provision made to put a plus or even a minus sign to a
number, since digital systems operate with binary numbers that are represented in terms of
“0’s” and “1’s”.

* For signed binary numbers the most significant bit (MSB) is used as the sign bit.

« If the sign bit is “0”, this means the number is positive in value.

+ If the sign bit is “1”, then the number is negative in value.

3 ways to represent negative binary number-
1. Sign magnitude

2. 1’'s compliment

3. 2’ compliment Sign magnitude:

Left most digit is used to indicate the sign and the remaining digits the magnitude or value of the
number.

Example-

Positive sigh magnitude:
8-bit word

00110101 = +53

e
positive magnitud e
sign bit bits

Negative sign magnitude:
G-bit word

10110101 = -53
P :

negative magnitud e
sign bit bits

The disadvantage here is that whereas before we had a full range n-bit unsigned binary number, we
now have an n-1 bit signed binary number giving a reduced range of digits from:

21 to +2(n-1)

1’s complement:

» The one’s complement of a negative binary number is the complement of its positive
counterpart.

* Thus, the one’s complement of “1” is “0” and vice versa, then the one’s complement of

100101002 is simply 011010112 as all the 1’s are changed to 0’s and the 0’s to 1’s. U
For representing the positive numbers, there is nothing to do.

But for representing negative numbers, we have to use 1's complement technique.

» For representing the negative number, we first have to represent it with a

positive sign, and then we find the 1's complement of it.
Example- 11010.1101
For finding 1's complement of the given number, change all 0'sto 1 and all 1's to 0. So, the 1's
complement of the number 11010.1101 comes out 00101.0010. 2’s complement:

+ 2's complement is also used to represent the signed binary numbers.

* For finding 2's complement of the binary number, we will first find the 1's
complement of the binary number and then add 1 to the least significant
bit of it.

Example- 110100

For finding 2's complement of the given number, change all 0'sto 1 and all 1's to 0. So, the 1's
complement of the number 110100 is 001011. Now add 1 to the LSB of this number, i.e.,
(001011)+1=001100.

Addition and subtraction using 1’s complement:
There are three different cases possible when we add two binary numbers which are as
follows:
Case 1: Addition of the positive number with a negative number when the positive
number has a greater magnitude.
Initially, calculate the 1's complement of the given negative number. Sum up with the given
positive number. If we get the end-around carry 1, it gets added to the LSB.
Example: 1101 and -1001

* First, find the 1's complement of the negative number 1001. So, for finding 1's

complement, change all 0 to 1 and all 1 to 0. The 1's complement of the number 1001

is 0110.

* Now, add both the numbers, i.e., 1101 and 0110; 1101+0110=1 0011

* By adding both numbers, we get the end-around carry 1. We add this end around carry
to the LSB of 0011. 0011+1=0100

Case 2: Adding a positive value with a negative value in case the negative number has
a higher magnitude.
Initially, calculate the 1's complement of the negative value. Sum it with a positive number. In
this case, we did not get the end-around carry. So, take the 1's complement of the result to
get the final result.
Note: The resultant is a negative value.
Example: 1101 and -1110
* First find the 1's complement of the negative number 1110. So, for finding 1's
complement, we change all 0 to 1, and all 1 to 0. 1's complement of the number 1110
is 0001.
* Now, add both the numbers, i.e., 1101 and 0001; 1101+0001= 1110
* Now, find the 1's complement of the result 1110 that is the final result. So, the 1's
complement of the result 1110 is 0001, and we add a negative sign before the number
so that we can identify that it is a negative number.
Case 3: Addition of two negative numbers
In this case, first find the 1's complement of both the negative numbers, and then we add both
these complement numbers. In this case, we always get the end-around carry, which get
added to the LSB, and for getting the final result, we take the 1's complement of the result.
Note: The resultant is a negative value.
Example: -1101 and -1110 in five-bit register

* Firstly, find the 1's complement of the negative numbers 01101 and 01110. So, for
finding 1's complement, we change all 0 to 1, and all 1 to 0. 1's complement of the
number 01110 is 10001, and 01101 is 10010.

* Now, we add both the complement numbers, ie., 10001 and 10010;
10001+10010=1 00011

* By adding both numbers, we get the end-around carry 1. We add this end-around carry
to the LSB of 00011. 00011+1=00100

* Now, find the 1's complement of the result 00100 that is the final answer. So, the 1's
complement of the result 00100 is 110111, and add a negative sign before the number
so that we can identify that it is a negative number.

Addition and subtraction using 2’s complement:
There are three different cases possible when we add two binary numbers using 2's
complement, which is as follows:
Case 1: Addition of the positive number with a negative number when the positive
number has a greater magnitude.
Initially find the 2's complement of the given negative number. Sum up with the given positive
number. If we get the end-around carry 1 then the number will be a positive number and the
carry bit will be discarded and remaining bits are the final result.
Example: 1101 and -1001
* First, find the 2's complement of the negative number 1001. So, for finding 2's
complement, change all 0 to 1 and all 1 to O or find the 1's complement of the number
1001. The 1's complement of the number 1001 is 0110, and add 1 to the LSB of the
result 0110. So the 2's complement of number 1001 is 0110+1=0111
* Add both the numbers, i.e., 1101 and 0111,
1101+0111=1 0100
+ By adding both numbers, we get the end-around carry 1. We discard the end-around
carry. So, the addition of both numbers is 0100.
Case 2: Adding of the positive value with a negative value when the negative number
has a higher magnitude.
Initially, add a positive value with the 2's complement value of the negative number. Here, no
end-around carry is found. So, we take the 2's complement of the result to get the final result.
Note: The resultant is a negative value.
Example: 1101 and -1110
» First, find the 2's complement of the negative number 1110. So, for finding 2's
complement, add 1 to the LSB of its 1's complement value 0001.
0001+1=0010
* Add both the numbers, i.e., 1101 and 0010; 1101+0010= 1111
* Find the 2's complement of the result 1110 that is the final result. So, the 2's
complement of the result 1110 is 0001, and add a negative sign before the number so
that we can identify that it is a negative number.
Case 3: Addition of two negative numbers
In this case, first, find the 2's complement of both the negative numbers, and then we will add
both these complement numbers. In this case, we will always get the end-around carry, which
will be added to the LSB, and forgetting the final result, we will take the2's complement of the
result.
Note: The resultant is a negative value.
Example: -1101 and -1110 in five-bit register
* Firstly, find the 2's complement of the negative numbers 01101 and 01110. So, for
finding 2's complement, we add 1 to the LSB of the 1's complement of these numbers.
2's complement of the number 01110 is 10010, and 01101 is 10011.

 We add both the complement numbers, i.e.,, 10001 and
10010;
10010+10011=1 00101
By adding both numbers, we get the end-around carry 1. This carry is discarded and
the final result is the 2.s complement of the result 00101. So, the 2's complement of
the result 00101 is 11011, and we add a negative sign before the number so that we
can identify that it is a negative number.
Digital codes:
In the coding, when numbers or letters are represented by a specific group of symbols, it is
said to be that number or letter is being encoded. The group of symbols is called as code. The
digital data is represented, stored and transmitted as group of bits. This group of bits is also
called as binary code.
Advantages of Binary Code:
* Binary codes are suitable for the computer applications.
+ Binary codes are suitable for the digital communications.
* Binary codes make the analysis and designing of digital circuits if we use the binary
codes.
» Since only 0 & 1 are being used, implementation becomes easy. Classification of
binary codes:
The codes are broadly categorized into following four categories.
* Weighted Codes
* Non-Weighted Codes
+ Binary Coded Decimal Code
* Alphanumeric Codes
» Error Detecting Codes
» Error Correcting Codes Weighted Codes:
Weighted binary codes are those binary codes which obey the positional weight principle.
Each position of the number represents a specific weight. Several systems of the codes are
used to express the decimal digits 0 through 9. In these codes each decimal digit is
represented by a group of four bits.

Decimal Digit 8421 Code 2421 Code 84-2-1 Code

0 0000 0000 0000
1 0001 0001 0111
2 0010 0010 0110
3 0011 0011 0101

4 0100 0100 0100

5 0101 1011 1011

6 0110 1100 1010

7 0111 1101 1001

8 1000 1110 1000

9 1001 1111 1111
8421 code

* The weights of this code are 8, 4, 2 and 1.

» This code has all positive weights. So, it is a positively weighted code.

* This code is also called as natural BCDBinary Coded Decimalcode.

* In this code each decimal digit is represented by a 4-bit binary number.

+ BCD is a way to express each of the decimal digits with a binary code.

* Inthe BCD, with four bits we can represent sixteen numbers (0000 to 1111).
* Butin BCD code only first ten of these are used (0000 to 1001).

* The remaining six code combinations i.e., 1010 to 1111 are invalid in BCD.

Decimal 0 1 2 3 4 5 6 7 8 9
BCD 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001
Example

Let us find the BCD equivalent of the decimal number 786. This number has 3 decimal digits
7, 8 and 6. From the table, we can write the BCD 84218421 codes of 7, 8 and 6 are 0111,
1000 and 0110 respectively.
78610 =0111 1000 0110scp

There are 12 bits in BCD representation, since each BCD code of decimal digit has 4 bits.
Advantages of BCD Codes

* ltis very similar to decimal system.

* We need to remember binary equivalent of decimal numbers 0 to 9 only.
Disadvantages of BCD Codes

* The addition and subtraction of BCD have different rules.

* The BCD arithmetic is little more complicated.

* BCD needs more number of bits than binary to represent the decimal number. So,

BCD is less efficient than binary.

Non-weighted code: n this type of binary codes, the positional weights are not assigned. The
examples of
nonweighted codes are Excess-3 code and Gray code.

Excess-3 code

The Excess-3 code is also called as XS-3 code.

It is non-weighted code used to express decimal numbers.

The Excess-3 code words are derived from the 8421 BCD code words adding (0011)2
or (3)10 to each code word in 8421.

The excess-3 codes are obtained as follows —

Add
Decimal Number = 8421 BCD =—— Excess-3
0011
Decimal BCD Excess-3

8 4 2 1 BCD + 0011

0 0 0 0O 0 0 Al 4

1 0 0 0 1 0 1 0 0

2 O 040 01 0 1

3 00 L % 0 3 4.0

4 01 00 01 %l R %

5 O 4. 05 12 10 00

6 O 1 30 G B) Y o i |

7 Jia s Lo 150 45 0

8 3 0 00 o 0T G

9 R 6 A 0 JER: = 11 0 0

Gray Code

It is the non-weighted code and it is not arithmetic codes.

That means there are no specific weights assigned to the bit position.

It has a very special feature that, only one bit will change each time the decimal
number is incremented as shown in fig.

As only one-bit changes at a time, the gray code is called as a unit distance code.
The gray code is a cyclic code. Gray code cannot be used for arithmetic operation.

Decimal BCD Gray
0 00 0 0 00 0 0
1 0 0 013 0 0 0 1
2 00 10 00 1 1
3 0 0 1 1 00 10
4 01 00 01 10
5 0 4 O 1 O 4 3
6 O = as 0 01 0 1
7 0 A 1: % 0100
8 10 00 1 =1 0 O
9 10 0 1 s FNEE DA 0 I

Binary code to Gray Code Conversion:
+ Consider the given binary code and place the MSB of binary to the left of MSB.

Compare the successive two bits starting from MSB. If the 2 bits are same, then the
output is zero. Otherwise, output is one.
* Repeat the above step till the LSB of Gray code is obtained.
Example-
From the table, we know that the Gray code corresponding to binary code 1000 is 1100. Now,
let us verify it by using the above procedure. Given, binary code is 1000. Step 1 — By placing
same MSB to the left of MSB, the binary code will be 1000.
Step 2 - By comparing successive two bits of new binary code, we will get the gray code as
1100.
Application of Gray code:
* Gray code is popularly used in the shaft position encoders.
* A shaft position encoder produces a code word which represents the angular position
of the shatft.
Alphanumeric codes:
* A binary digit or bit can represent only two symbols as it has only two states '0" or '1".
* But this is not enough for communication between two computers because there we
need many more symbols for communication.
* These symbols are required to represent 26 alphabets with capital and small letters,
numbers from O to 9, punctuation marks and other symbols.
* The alphanumeric codes are the codes that represent numbers and alphabetic
characters.
* Mostly such codes also represent other characters such as symbol and various
instructions necessary for conveying information.
* An alphanumeric code should at least represent 10 digits and 26 letters of alphabet
i.e. total 36 items.
+ The following two alphanumeric codes are very commonly used for the data
representation.

i. American Standard Code for Information Interchange (ASCII).
ii. Extended Binary Coded Decimal Interchange Code (EBCDIC).
* ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code.
* ASCII code is more commonly used worldwide while EBCDIC is used primarily in large
IBM computers.
Error detection codes:
» Error detection codes are used to detect the errors present in the received data

bitstream.

* These codes contain some bits, which are included appended to the original bit
stream.

* These codes detect the error, if it is occurred during transmission of the original data
bitstream.

+ Example - Parity code, Hamming code.

Error correction codes:
» Error correction codes are used to correct the errors present in the received data
bitstream so that, we will get the original data.
» Error correction codes also use the similar strategy of error detection codes.
+ Example - Hamming code.
Therefore, to detect and correct the errors, additional bits are appended to the data bits at the
time of transmission. Logic gates:

* Logic gates play an important role in circuit design and digital systems.
* Itis a building block of a digital system and an electronic circuit that always have only
one output.
These gates can have one input or more than one input, but most of the gates have
two inputs.
We can classify these Logic gates into the following three categories.
1. Basic gates
2. Universal gates
3. Special gates Basic gates:
The basic gates are AND, OR & NOT gates.
AND gate:
An AND gate is a digital circuit that has two or more inputs and produces an output, which is
the logical AND of all those inputs. It is optional to represent the Logical AND with the symbol

The following table shows the truth table of 2-input AND gate.

A B Y=AB
0 0 0
0 1 0
1 0 0
1 1 1

Here A, B are the inputs and Y is the output of two input AND gate. If both inputs are ‘1°, then
only the output, Y is ‘1. For remaining combinations of inputs, the output, Y is ‘0’.

The following figure shows the symbol of an AND gate, which is having two inputs A, B and
one output, Y.

OR gate:

An OR gate is a digital circuit that has two or more inputs and produces an output, which is
the logical OR of all those inputs. This logical OR is represented with the symbol ‘+’. The
following table shows the truth table of 2-input OR gate.

A B Y=A+B

1 1 1

Here A, B are the inputs and Y is the output of two input OR gate. If both inputs are ‘0’, then
only the output, Y is ‘0’. For remaining combinations of inputs, the output, Y is ‘1’.

The following figure shows the symbol of an OR gate, which is having two inputs A, B and
one output, Y.

Y=A+B

This OR gate produces an output Y, which is the logical OR of two inputs A, B.

NOT gate:

A NOT gate is a digital circuit that has single input and single output. The output of NOT gate
is the logical inversion of input. Hence, the NOT gate is also called as inverter. The following
table shows the truth table of NOT gate.

A Y=A!
0 1
1 0

Here A and Y are the input and output of NOT gate respectively. If the input, A is ‘0’, then the
output, Y is ‘1’. Similarly, if the input, A is ‘1, then the output, Y is ‘0’.

The following figure shows the symbol of NOT gate, which is having one input, A and one
output, Y.

This NOT gate produces an output Y, which is the complement of input, A.

Universal gates

NAND & NOR gates are called as universal gates.

NAND gate

NAND gate is a digital circuit that has two or more inputs and produces an output, which is
the inversion of logical AND of all those inputs.

The following table shows the truth table of 2-input NAND gate.
A B Y = (A.B)’

The following image shows the symbol of NAND gate, which is having two inputs A, B and
one output, Y.

A —
Y=(A.B)

B_

NAND gate operation is same as that of AND gate followed by an inverter. That's why the
NAND gate symbol is represented like that.

NOR gate:

NOR gate is a digital circuit that has two or more inputs and produces an output, which is the
inversion of logical OR of all those inputs.

The following table shows the truth table of 2-input NOR gate

A B Y = (A+B)’
0 0 1
0 1 0
1 0 0
1 1 0

The following figure shows the symbol of NOR gate, which is having two inputs A, B and one
output, Y.

A
Y=(A+B)
B

NOR gate operation is same as that of OR gate followed by an inverter. That's why the NOR
gate symbol is represented like that.

Special Gates

Ex-OR & Ex-NOR gates are called as special gates. Because, these two gates are special
cases of OR & NOR gates.

Ex-OR gate:

The full form of Ex-OR gate is Exclusive-OR gate. Its function is same as that of OR gate
except for some cases, when the inputs having even number of ones. The following table
shows the truth table of 2-input Ex-OR gate.

A B Y = ADB

0 0 0
0 1 1
1 0 1
1 1 0

The output of Ex-OR gate is ‘1°, when only one of the two inputs is ‘“1°. And it is zero, when
both inputs are same.
Below figure shows the symbol of Ex-OR gate, which is having two inputs A, B and one output,

Y.
A
Y=A®B
B

The output of Ex-OR gate is “1’, when odd number of ones present at the inputs. Hence, the
output of Ex-OR gate is also called as an odd function.

Ex-NOR gate:

The full form of Ex-NOR gate is Exclusive-NOR gate. Its function is same as that of NOR gate
except for some cases, when the inputs having even number of ones. The following table
shows the truth table of 2-input Ex-NOR gate.

A B Y =AQOB
0 0 1
0 1 0
1 0 0
1 1 1

The output of Ex-NOR gate is ‘“1’, when both inputs are same. And it is zero, when both the
inputs are different.

The following figure shows the symbol of Ex-NOR gate, which is having two inputs A, B and
one output, Y.

Y=A®B

The output of Ex-NOR gate is ‘1’, when even number of ones present at the inputs. Hence,
the output of Ex-NOR gate is also called as an even function.
From the above truth tables of Ex-OR & Ex-NOR logic gates, we can easily notice that the
ExXNOR operation is just the logical inversion of Ex-OR operation.

Universal gates and its realization:
We can realise all of the other gates by using just one single type of universal logic gate, the
NAND (NOT AND) or the NOR (NOT OR) gate, thereby reducing the number of different types
of logic gates required, and also the cost. Thus, the NAND and the NOR gates are commonly
referred to as Universal Logic Gates. Implementation of logic gates using NAND gate only:

NAND Gate Symbaol

N —
B &—

Y

AND Gate
A] &8 B AB
B (O—
A A OR Gate
B
B
NOR Gate

g

A

A O—E

A
}E

vl |
2

A
B

j:BE

DP::-DB

NOT Gate
oy {Inverter)

Buffer

3)_%
Exclusive-OR

DL}%

: Exclusive-NOR

[D=

T

0

o
DJDI

Implementation of logic gates using NOR gate only:
MOR Gate Symbaol MNOT Gate

A A n {Inverter)
Q= A+B
B

Buffer
OR Gate -

Exclusive-OR

A+B

A O
B O

AMND Gate

MNAKND Gate

g

AB

Exclusive-NOR

AB

Boolean Algebra:

Boolean Algebra is used to analyse and simplify the digital (logic) circuits. It uses only the
binary numbers i.e., 0 and 1. It is also called as Binary Algebra or logical Algebra. Boolean
algebra was invented by George Boole in 1854.

Boolean Laws

There are six types of Boolean Laws.

Commutative law

Any binary operation which satisfies the following expression is referred to as commutative
operation.

()A.B=B.A (ii)A+B=B+A

Commutative law states that changing the sequence of the variables does not have any effect
on the output of a logic circuit.

Associative law
This law states that the order in which the logic operations are performed is irrelevant as their
effect is the same.
(i) (A.B).C=A.(B.C) (ii)(A+B)+C=A+(B+()
Distributive law
Distributive law states the following condition.
A(B+C)=AB+AC
AND law
These laws use the AND operation. Therefore, they are called as AND laws.

(i)A.0=0 (ii)A1=A
(i) AL A=A (ivJAA=0

OR law

These laws use the OR operation. Therefore, they are called as OR laws.
(JA+0=A (ii)A+1=1
(iii) A+A=A (ivVA+A=1

INVERSION law

This law uses the NOT operation. The inversion law states that double inversion of a variable
results in the original variable itself.

A=A
Boolean Function:
Boolean algebra deals with binary variables and logic operation. A Boolean Function is
described by an algebraic expression called Boolean expression which consists of binary
variables, the constants 0 and 1, and the logic operation symbols. Consider the following
example.

F (A, B, C,D) A +BC+ADC Equation No. 1

Boolean Function Boolean Expression
Here the left side of the equation represents the output Y. So we can state equation no. 1

Y = A+BC+ADC
Truth Table Formation
A truth table represents a table having all combinations of inputs and their corresponding
result.

It is possible to convert the switching equation into a truth table. For example, consider the
following switching equation.

F(A B,C) = A +BC

The output will be high (1) if A=1 or BC = 1 or both are 1. The truth table for this equation is
shown by Table (a). The number of rows in the truth table is 2" where n is the number of input
variables (n=3 for the given equation). Hence there are 23 = 8 possible input combination of
inputs.

Inputs Output
A Byl :C F
0| O 0 0
0| O 1 0
0| 1 0 0
0| 1 1 1
1|0 0 1
1|10 1 1
o |l 0 1
1)1 1 1

De Morgan's Theorem:
De Morgan’s 15 theorem states that the complement of the product of all the terms is equal
to the sum of the complement of each term.

(A.By=A+B
MNAND
A ALB A B
B j‘ ;
A A
A+B
B B

MNegative-OR
De Morgan’s 2" theorem states that the complement of the sum of all the terms is equal to
the product of the complement of each term.

(A+B)y=A.PF

A+B

>
m|® -
I} 1 8
5|
B
o)

MNegative-AMND
Duality Theorem:
This theorem states that the dual of the Boolean function is obtained by interchanging the
logical AND operator with logical OR operator and zeros with ones. For every Boolean
function, there will be a corresponding Dual function.

Groupl Group2

X+0=X x.1 =X
x+1=1 x.0=0
X+ X=X X.X =X
x+x =1 xx =0
X+y=y+X X.y = y.X

Example-1:
Given Boolean function, f = p’gr + pg’r + pqr’ + pqr.

Step 1 - Use the Boolean postulate, x + x = x. That means, the Logical OR operation with
any Boolean variable ‘n’ times will be equal to the same variable. So, we can write the last
term pgr two more times.

=f=p'qr+ pqg’r + par’ + par + pgr + pqr
Step 2 - Use Distributive law for 15t and 4™ terms, 2"¢ and 5" terms, 3" and 6™ terms.

= f=qrp"+pp™+p + prq+qq'+q + pqri+rr'+r

Step 3 - Use Boolean postulate, x + X’ = 1 for simplifying the terms present in each
parenthesis.

=f=qrll +prll + pqll
Step 4 - Use Boolean postulate, x.1 = x for simplifying the above three terms.
>f=qr+pr+pg=f=
pg + qr + pr Therefore, the simplified Boolean function is f = pq
+qr + pr.

Example-2:
Let us find the complement of the Boolean function, f = p’q + pq’. The complement
of Boolean function is f = p'q+pq'p'g+pq”.

Step 1 - Use DeMorgan’s theorem, x+yx+y’ = x.y". = f

=p'qp'q’.pa’Pq”

Step 2 - Use DeMorgan’s theorem, x.yx.y' = x +y’

=f={pp"+q}{p’+qq9"}

Step3 — Use the Boolean postulate, x'x"=x. = f ={p +
q}{p'+aqt=Ff=pp +pqg+pq+qq
Step 4 — Use the Boolean postulate, xx’=0.

=f=0+pq+pqg+0=
f=pg+pdq

Therefore, the complement of Boolean function, p’q + pq’is pgq + p’q’.

SOP and POS form:
Sum of Product (SOP):

The Sum of Product expression is equivalent to the logical AND function which Sums
two or more Products to produce an output.

We will get four Boolean product terms by combining two variables x and y with logical
AND operation.

These Boolean product terms are called as min terms or standard product terms.

a If the binary variable is ‘0’, then it is represented as complement of variable and
‘1’ as normal form in min term. The min terms are xX’y’, X'y, xy’ and xy. Product of Sum
(POS):

The Product of Sum expression is equivalent to the logical OR-AND function which
gives the AND Product of two or more OR Sums to produce an output.

We will get four Boolean sum terms by combining two variables x and y with logical
OR operation.

These Boolean sum terms are called as Max terms or standard sum terms.O If the
binary variable is ‘1’, then it is represented as complement of variable and ‘0’ as normal
form in Max term. The Maxterms are x+y,x+y, X +yand X’ +y’.

y Min terms Max terms
0 Mo=x"y’ Mo=x +y
1 mi=x'y Mi=x +y’
0 my=xy’ Mo=x" +y

1 M3=Xy Ms=x"+y’

Canonical SOP and POS forms:

A truth table consists of a set of inputs and outputs.

If there are ‘n’ input variables, then there will be 2" possible combinations with zeros
and ones.

So, the value of each output variable depends on the combination of input variables.

a So, each output variable will have ‘1’ for some combination of input variables
and ‘0’ for some other combination of input variables.

Therefore, we can express each output variable in following two ways.

Canonical SOP form

Canonical POS form Canonical SOP form:

Canonical SOP form means Canonical Sum of Products form.

In this form, each product term contains all literals.

So, these product terms are nothing but the min terms. Hence, canonical SOP form is
also called as sum of min terms form.

First, identify the min terms for which, the output variable is one and then do the logical
OR of those min terms in order to get the Boolean expression function corresponding
to that output variable. This Boolean function will be in the form of sum of min terms.
Follow the same procedure for other output variables also, if there is more than one
output variable. Example

Consider the following truth table.

Inauts Ou put
p Q r f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Here, the output f is ‘1’ for four combinations of inputs.

The corresponding min terms are p’qr, pq’r, par, pqr.

By doing logical OR of these four min terms, we will get the Boolean function of output
f.

Therefore, the Boolean function of output is, f=

p'ar + pq’r + pgr’ + par.

This is the canonical SOP form of output, f. We can also represent this function in following
two notations.

f = m3+m5+m6+m7 =) m(3,5,6,7)
In one equation, we represented the function as sum of respective min terms. In other
equation, we used the symbol for summation of those min terms. Canonical POS form:

« Canonical POS form means Canonical Product of Sums form.

* In this form, each sum term contains all literals. So, these sum terms are nothing but
the Max terms. Hence, canonical POS form is also called as product of Max terms
form.

* First, identify the Max terms for which, the output variable is zero and then do the
logical AND of those Max terms in order to get the Boolean expression function
corresponding to that output variable. This Boolean function will be in the form of
product of Max terms.

» Follow the same procedure for other output variables also, if there is more than one
output variable.

Example
* Consider the same truth table of previous example. - Here, the output f is ‘0’ for
four combinations of inputs. ¢ The corresponding Max terms arep+q+r, p +

g+r,p+q+r,p+q+r.
+ By doing logical AND of these four Max terms, we will get the Boolean function of
output f.

Therefore, the Boolean function of output is, f=
(p+g+r). (p+g+r'). (p+q'+r). (p"+q+r).
This is the canonical POS form of output, f.
We can also represent this function in following two notations. f=M0.M1.M2.M4 f=[]M(0,1,2,4)
In one equation, we represented the function as product of respective Max terms. In other
equation, we used the symbol for multiplication of those Max terms. The Boolean function,
f=(p+q+r). (p+q+r). (p+q'+r). (p+q+r)
is the dual of the Boolean function, f
=p'qr+pq’r+ par + pqr.
Therefore, both canonical SOP and canonical POS forms are Dual to each other. Functionally,
these two forms are same. Based on the requirement, we can use one of these two forms.
Standard SOP and POS forms
We discussed two canonical forms of representing the Boolean outputs. Similarly, there are
two standard forms of representing the Boolean outputs. These are the simplified version of
canonical forms.

« Standard SOP form

« Standard POS form
The main advantage of standard forms is that the number of inputs applied to logic gates can
be minimized. Sometimes, there will be reduction in the total number of logic gates required.
Standard SOP form:
Standard SOP form means Standard Sum of Products form. In this form, each product term
need not contain all literals. So, the product terms may or may not be the min terms.
Therefore, the Standard SOP form is the simplified form of canonical SOP form.
We will get Standard SOP form of output variable in two steps.

« Get the canonical SOP form of output variable

« Simplify the above Boolean function, which is in canonical SOP form.
Follow the same procedure for other output variables also, if there is more than one output
variable. Sometimes, it may not possible to simplify the canonical SOP form. In that case, both
canonical and standard SOP forms are same.
Example
Convert the following Boolean function into Standard SOP form. f

=p'qr+pq’r+ par’ + par
The given Boolean function is in canonical SOP form. Now, we have to simplify this Boolean
function in order to get standard SOP form.
Step 1 - Use the Boolean postulate, x + x = x. That means, the Logical OR operation with
any Boolean variable ‘n’ times will be equal to the same variable. So, we can write the last
term pqgr two more times.
= f=p'gr+pq’r + pgr’ + pqr + par + pgr
Step 2 - Use Distributive law for 15t and 4™ terms, 2" and 5™ terms, 3" and 6" terms. =
f=qr (p'+p) + pr (q+q) + pq (r'+r)
Step 3 - Use Boolean postulate, x + X’ = 1 for simplifying the terms present in each
parenthesis. =f=qrl1+prl+pgl
Step 4 - Use Boolean postulate, x.1 = x for simplifying above three terms.
=>f=qr+pr+pg=>
f=pg+qr+pr
This is the simplified Boolean function. Therefore, the standardSOP form corresponding to
given canonical SOP form is f = pg + gr + prStandard POS form:
Standard POS form means Standard Product of Sums form. In this form, each sum term
need not contain all literals. So, the sum terms may or may not be the Max terms. Therefore,
the Standard POS form is the simplified form of canonical POS form.
We will get Standard POS form of output variable in two steps.
+ Get the canonical POS form of output variable
- Simplify the above Boolean function, which is in canonical POS form.
Follow the same procedure for other output variables also, if there is more than one output
variable. Sometimes, it may not possible to simplify the canonical POS form. In that case, both
canonical and standard POS forms are same.

Example
Convert the following Boolean function into Standard POS form.
f= (p+q+r). (p+a+r). (p+q'+r). (p'+q+r)
The given Boolean function is in canonical POS form. Now, we have to simplify this Boolean
function in order to get standard POS form.
Step 1 - Use the Boolean postulate, x.x = x. That means, the Logical AND operation with
any Boolean variable ‘n’ times will be equal to the same variable. So, we can write the first
term p+qg+r two more times.
= f=(p+q+r). (p+q+r). (p+q+r). (p+q+r). (p+g'+r). (p'+q+r)
Step 2 — Use Distributive law, x + y.z = (x+y). (x+z) for 15t and 4™ parenthesis, 2" and 5%
parenthesis, 3" and 6™ parenthesis.
= f= (p+a+rr'). (p+r+qq’). (q+r+pp’)
Step 3 - Use Boolean postulate, x.x’=0 for simplifying the terms present in each parenthesis.
= f= (p+q+0). (p+r+0). (q+r+0)

Step 4 - Use Boolean postulate, x + 0 = x for simplifying the terms present in each
parenthesis = f = (p+q). (p+r). (q+r) = f = (p+q). (g+r). (p+r)
This is the simplified Boolean function. Therefore, the standard POS form corresponding to
given canonical POS form is f = (p+q). (g+r). (p+r). This is the dual of the Boolean function,
f=pg+qr+pr.
Therefore, both Standard SOP and Standard POS forms are Dual to each other. Karnaugh
map:

« Karnaugh introduced a method for simplification of Boolean functions in an easy way.

Mhis method is known as Karnaugh map method or K-map method.

+ ltis a graphical method, which consists of 2n cells for ‘n’ variables. U The
adjacent cells are differed only in single bit position.
2-Variable K-Map:
The number of cells in 2 variable K-map is four, since the number of variables is two.
Z

0 1
Y
YZ
0 mg | My 00 01 11 10
i mo| ma or Mg | my| m3| my

* There is only one possibility of grouping 4 adjacent min terms.
* The possible combinations of grouping 2 adjacent min terms are {(mo, M), (M2, M3),
(mo, mz2) and (m1, ms)}. 3-Variable K-Map:
The number of cells in 3 variable K-map is eight, since the number of variables is three.

XYZ 00 01 11 10

O Mg my | Mz) Mo

1 my| ms| m5| mg

* There is only one possibility of grouping 8 adjacent min terms.

The possible combinations of grouping 4 adjacent min terms are {(mo, M1, M3, My),
(M4, Ms, M7, Mg), (Mo, M1, M4, Ms), (M1, M3, Ms, M7), (M3, M2, M7, Me) and (M2, Mo, M,
m4)}

The possible combinations of grouping 2 adjacent min terms are {(mo, M1), (M1, M3),

(M3, mz), (M2, Mo), (M4, Ms), (Ms, My), (M7, Ms), (Me, M4), (Mo, M4), (M1, Ms), (M3, M7)
and (mz, me)}.

» If x=0, then 3 variable K-map becomes 2 variable K-map.
4-Variable K-Map:

The number of cells in 4 variable K-map is sixteen, since the number of variables is four.

WX = 00 01 11 10

00 | Mg | My | Mz My

01 | mg| ms| m5| mg

11 My Mis|Mis|Mia

10 Mg | Mg |IM14] M40

CcD
AB 00 [+] o

oo 22 S 707 N 734 \(ij)
1 1 1 [

Co[—H T T 1D
1 1 i P

6 T T T —1 D
T 1 T T B

Go[—1 i I —1 b
a 1 1 1

* There is only one possibility of grouping 16 adjacent min terms.

* Let Ry, Rz, Rz and R4 represents the min terms of first row, second row, third row and
fourth row respectively. Similarly, C1, C2, Cs and Cs4 represents the min terms of first
column, second column, third column and fourth column respectively. The possible
combinations of grouping 8 adjacent min terms are {(R1, R2), (R2, R3), (Rs, R4), (R4,
R1), (Cq1, C2), (Cy, C3), (Cs, Ca), (Ca, Co)}.

« If w=0, then 4 variable K-map becomes 3 variable K-map. Example-

f(W,X,Y,2)= >m(2,6,8,9,10,11,14,15) using K-map.
The given Boolean function is in sum of products form. It is having 4 variables W, X, Y & Z.
So, we require 4 variable K-map.

WX X OO0 01 11 10
oo 1
o1 1
11 1 1
10 1 1 1 1

The 4 variable K-map with three groupings is
YZ

WX 00 o1 11 10
00 1 Qe sesiaes Y-Z
01 1

11 1 1 ff----- WY

Therefore, the simplified Boolean function is f= WX’ +
WY +YZ’

Example- f(X,Y,Z)=[1M(0,1,2,4) using

K-map.

The given Boolean function is in product of Max terms form. It is having 3 variables X, Y & Z.
So, we require 3 variable K-map.

X = 00 01 11 10
0 0 0 0
1 0

The 3 variable K-map with three groupings is
X+Y
= \YZ 00 §o1 11 10
o_ olil o | [O—'_' -
O

1

Y+Z
Therefore, the simplified Boolean function is
f = (X+Y). (Y+2). (Z+X)

Don’t care condition:

+ The "Don't care" condition says that we can use the blank cells of a K-map to make a
group of the variables.

* To make a group of cells, we can use the "don't care" cells as either 0 or 1, and if
required, we can also ignore that cell.

* We mainly use the "don't care" cell to make a large group of cells.

* The cross(X) symbol is used to represent the "don't care" cell in K-map.

* This cross symbol represents an invalid combination.

« The "don't care" in excess-3 code are 0000, 0001, 0010, 1101, 1110, and 1111
because they are invalid combinations.

* Apart from this, the 4-bit BCD to Excess-3 code, the "don't care" are 1010, 1011, 1100,
1101, 1110, and 1111.

Example 1: Minimize f = 3} m(1,5,6,12,13,14) + d(4) in SOP minimal form

CcD
AB 00 01 1 10

00 F |
TG []
IS RSN

10

So, the minimized SOP form of the function is: f

=BC'+ BD'+ A'C'D Example-2:

Minimize the following function in SOP minimal form using K-Maps: F(A, B, C, D) =>m(1,
2,6,7,8,13, 14, 15) +d(3, 5, 12)

CcD
AB 00 01 " 10

a1
o |CHINIS
1 |x\ 1 3 1]
o (4]

F=ACD +AD+AC+AB

UNIT-2Combinational logic circuit

Combinational circuit is a circuit in which we combine the different gates in the circuit, for
example encoder, decoder, multiplexer and demultiplexer. Some of the characteristics of
combinational circuits are following —

- The output of combinational circuit at any instant of time, depends only on the levels
present at input terminals.

- The combinational circuit do not use any memory. The previous state of input does not
have any effect on the present state of the circuit.

« A combinational circuit can have an n number of inputs and m number of outputs.

Block Diagram:

—» Combinational ——

circuit

Half Adder

Half adder is a combinational logic circuit with two inputs and two outputs. The half adder
circuit is designed to add two single bit binary number A and B. It is the basic building block
for addition of two single bit numbers. This circuit has two outputs carry and sum. Block
diagram

A —— & L » Sum’s’
Half Adder
B I L, Camry d
Truth Table
Inputs OQutput
A B S G
(0} 0} (0] O
o 1 10
1 0 10
1 1 0 1

Circuit Diagram

A—r— s
B — 4 o
|| \c
Full Adder

Full adder is developed to overcome the drawback of Half Adder circuit. It can add two onebit
numbers A and B, and carry c. The full adder is a three input and two output combinational
circuit.

Block diagram

B —M

SN

Full Adder

Truth Table

Inputs Output
A B Cin S5.Co
o o o o o
o o 1 i1 0O
o 1 o i 0
o 1 1 o 1
1 o o i 0
1 o 1 0o 1
1 = K o 0o 1
5 K all 1 =1

Circuit Diagram

A

Cin

r_r

s Sum'’s

‘o r

L » Carry ‘c.

ﬁ

Co

—

s
- AB
Sy
[\ AGi
-
>, BCin
s/

Implementation of Full Adder using Half Adders

2 Half Adders and a OR gate is required to implement a Full Adder.

=AB + ACin + BCin

Sum

C - Out
Half - Adder

Half - Adder

With this logic circuit, two bits can be added together, taking a carry from the next lower order
of magnitude, and sending a carry to the next higher order of magnitude.

Implementation of Full Adder using NAND gates:
A

a » »—

Cin '

.

. Cout

The Full Adder is capable of adding only two single digit binary number along with a carry
input. But in practical we need to add binary numbers which are much longer than just one bit.
To add two n-bit binary numbers we need to use the n-bit parallel adder. It uses a number of
full adders in cascade. The carry output of the previous full adder is connected to carry input
of the next full adder.

4 Bit Parallel Adder

In the block diagram, Ao and Bo represent the LSB of the four bit words A and B. Hence Full
Adder-0 is the lowest stage. Hence its Ci, has been permanently made 0. The rest of the
connections are exactly same as those of n-bit parallel adder is shown in fig. The four-bit
parallel adder is a very common logic circuit.

Block diagram

As Bs Az Bz A B1 Ao Bo

0 I IR O

\
Co G FullAdder | € Co Eyll Adder | Co Cﬂ Full Adder | Go| Full Adder Cr

3 2 | L 1 0
l
Sz Sz St Se

Half Subtractors

Half subtractor is a combination circuit with two inputs and two outputs (difference and borrow).
It produces the difference between the two binary bits at the input and also produces an output
(Borrow) to indicate if a 1 has been borrowed. In the subtraction (A-B), A is called as Minuend
bit and B is called as Subtrahend bit.

Truth Table
Inputs Output
A B | (A—B) Borrow
(0] (8] 0 0
(0] 1 1 1
1 0 1 0
k¢ 1 (0] (0]

A—T——D) D=A+B

Full Subtractors

The disadvantage of a half subtractor is overcome by full subtractor. The full subtractor is a
combinational circuit with three inputs A,B,C and two output D and C'. A is the 'minuend’, B is
'subtrahend’, C is the 'borrow' produced by the previous stage, D is the difference output and
C' is the borrow output.

Truth Table

Inputs Output

w

(A-B-C) C

[S P B s T s T e T B O e -
{=C S B e T B = R SN SN B o B B
= Ol | Ok | ol o |0
= OO |k | O (k=L

b O O | O ||

Circuit Diagram

A B C
! - L ;‘—‘él—//\—\\ D=A+B+C
i - 4
= —_—) ﬁ\\\ ' — AC =
! /\ ‘/_;// C'=AC+ AB+BC
[= ‘
L

A D,= (AB) | D,= (ADB)PB, |ADBDS

‘ Half- i B, 02090909090 0 =mm==-

Subtractor . Subtractor
@ [Bu=A.B Bin @ By, =(AGSB) .B,,
B e
(AEDB) .B,,
Bout
Bi ~ A.B
Multiplexers

Multiplexer is a special type of combinational circuit. There are n-data inputs, one output and
m select inputs with 2m = n. It is a digital circuit which selects one of the n data inputs and
routes it to the output. The selection of one of the n inputs is done by the selected inputs.
Depending on the digital code applied at the selected inputs, one out of n data sources is
selected and transmitted to the single output Y. E is called the strobe or enable input which is

useful for the cascading. It is generally an active low terminal that means it will perform the
required operation when it is low.

Block diagram

Poop

Data -
n:l H— » Y (output)
Input Multiplexer

Enable

Input T l l

S—=

Select Input

Multiplexers come in multiple variations

« 2:1 multiplexer
« 4:1 multiplexer
« 16 : 1 multiplexer
« 321 multiplexer

Block Diagram

E —
Truth Table
Enable Select Output
E S Y
0 X 0
1 0 Do
1 1 D:

x = Don’t care

Demultiplexers

A demultiplexer performs the reverse operation of a multiplexer i.e. it receives one input and
distributes it over several outputs. It has only one input, n outputs, m select input. At a time
only one output line is selected by the select lines and the input is transmitted to the selected
output line. A de-multiplexer is equivalent to a single pole multiple way switch as shown in fig.

Demultiplexers comes in multiple variations.

: 2 demultiplexer
. 4 demultiplexer
: 16 demultiplexer
: 32 demultiplexer

L]
e

Block diagram

D.-

7 S A
DEMUX

Truth Table

4:1 Multiplexer

4:1 Multiplexer has four data inputs I3, Iz, 11& lo, two selection lines s1& so and one output Y.
The block diagram of 4x1 Multiplexer is shown in the following figure.

Io —> 4x1

I, ——>» Multiplexer

11

One of these 4 inputs will be connected to the output based on the combination of inputs
present at these two selection lines.

Truth table of 4:1 Multiplexer is shown below.

Selection Lines Output

S So Y

From Truth table, we can directly write the Boolean function for output, Y as
Y =51'S0'Io+ S1'S0I1 + S1S0'1, + S1S013

We can implement this Boolean function using Inverters, AND gates & OR gate.

The circuit diagram of 4:1 multiplexer is shown in the following figure.

- N N7 = >i
—1

We can easily understand the operation of the above circuit. Similarly, you can implement 8x1
Multiplexer and 16x1 multiplexer by following the same procedure.

Enable | Select Output
E S YO Y1

X 0 O
1 0 0O Dan

1 1 Dan O

x = Don’t care

1:4 De-Multiplexer

1:4 De-Multiplexer has one input I, two selection lines, si1& So and four outputs Ys, Y2, Y1&Yo.
The block diagram of 1:4 De-Multiplexer is shown in the following figure.

i x4

> De-Multiplexer

T 1

Sa So

The single input ‘I’ will be connected to one of the four outputs, Y3 to Yo based on the values
of selection lines s1& sO. The Truth table of 1x4 De-Multiplexer is shown below.

Selection Inputs Outputs
S1 So Ys Y2 Y1 Yo
0 0 0 0 0
0 1 0 0 0
1 0 0 0 0
1 1 I 0 0 0

From the above Truth table, we can directly write the Boolean functions for each output as

Y3 = 5150l
Y2 =s1s0'1
Y1 =s51's01
Y0 =51's0'I

We can implement these Boolean functions using Inverters & 3-input AND gates.

The circuit diagram of 1:4 De-Multiplexer is shown in the following figure.

Y2

Yi

Yo

(7Y

Decoder

A decoder is a combinational circuit. It has n input and to a maximum m = 2n outputs. Decoder
is identical to a demultiplexer without any data input. It performs operations which are exactly
opposite to those of an encoder.

Block diagram

g | - @9
" n ”n g o} " m ”
input Decoder output
lines lines
(9])

Examples of Decoders are following.

+ Code converters
- BCD to seven segment decoders
2 to 4 Decoder

Let 2 to 4 Decoder has two inputs A1& Ao and four outputs Ys, Yz, Yi& Yo.

The block diagram of 2 to 4 decoder is shown in the following figure.

2 to 4
Ao > Decoder

One of these four outputs will be ‘1’ for each combination of inputs when enable, E is ‘1°.
The Truth table of 2 to 4 decoder is shown below.

Enable Inputs Outputs

0 X X 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

From Truth table, we can write the Boolean functions for each output as

Y3 =E. A1. A0
Y2=E.A1.A0" Y1
=E.A1". A0

Y0 =E.A1". A0’

Each output is having one product term. So, there are four product terms in total. We can
implement these four product terms by using four AND gates having three inputs each & two
inverters. The circuit diagram of 2 to 4 decoder is shown in the following figure.

BEAIN j
O
I

Therefore, the outputs of 2 to 4 decoder are nothing but the min terms of two input variables
A:1& Ao, when enable, E is equal to one. If enable, E is zero, then all the outputs of decoder
will be equal to zero.

Similarly, 3 to 8 decoder produces eight min terms of three input variables Az, A1& Ao and 4
to 16 decoder produces sixteen min terms of four input variables Az, Az, A1& Ao. Encoder
Encoder is a combinational circuit which is designed to perform the inverse operation of the
decoder. An encoder has n number of input lines and m number of output lines. An encoder
produces an m bit binary code corresponding to the digital input number. The encoder accepts
an n input digital word and converts it into an m bit another digital word. Block diagram

“w_mn | 7

input Encoder output
lines lines

Examples of Encoders are following.

« Priority encoders

« Decimal to BCD encoder

« Octal to binary encoder

« Hexadecimal to binary encoder
4to 2 Encoder

Let 4 to 2 Encoder has four inputs Y3, Y2, Yi& Yo and two outputs Ai& Ao.

The block diagram of 4 to 2 Encoder is shown in the following figure.

4to2 > A1

Encoder 5 A,

At any time, only one of these 4 inputs can be ‘1’ in order to get the respective binary code at
the output. The Truth table of 4 to 2 encoder is shown below.

In uts Outouts

Y3 Y, Y1 Yo A1 Ao

0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

From Truth table, we can write the Boolean functions for each output as
Al=Y3+Y2
A0=Y3+Y1

We can implement the above two Boolean functions by using two input OR gates.

The circuit diagram of 4 to 2 encoder is shown in the following figure.

Y3
Y2

Ap
Y1

The above circuit diagram contains two OR gates. These OR gates encode the four inputs
with two bits

Octal to Binary Encoder

Octal to binary Encoder has eight inputs, Y7 to Yo and three outputs Az, A1& Ao. Octal to binary
encoder is nothing but 8 to 3 encoder.

The block diagram of octal to binary Encoder is shown in the following figure.

Y7 ———>
Y. =

Octal —> Ao
Ys >
to A
>
Yq —mmm> 1
Binary
Y3 —— ——>» Ag

Yoy —> Encoder

At any time, only one of these eight inputs can be ‘1’ in order to get the respective binary code.
The Truth table of octal to binary encoder is shown below.

Inputs Outputs

Y7 Ya Y5 Y4 Y3 Y2 Y:L YO A2 Al AO

0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

From Truth table, we can write the Boolean functions for each output as
A2=Y7+Y6+Y5+Y4
Al=Y7+Y6+Y3+Y2
A0=Y7+Y5+Y3+Y1

We can implement the above Boolean functions by using four input OR gates.

The circuit diagram of octal to binary encoder is shown in the following figure.

Ye \]

Y

va /

N]

¥ I
)

Y1 /

The above circuit diagram contains three 4-input OR gates. These OR gates encode the eight

inputs with three bits.

Digital comparator

The Digital Comparator is another very useful combinational logic circuit used to compare the

value of two binary digits.

1-bit Digital Comparator Circuit

A e

-
=

J U

] e

Then the operation of a 1-bit digital comparator is given in the following Truth Table. Digital
Comparator Truth Table

B A A>B A=B

A<B

= A<B

@% D = AB+AB = A=B

I={>A:=B

2-bit Magnitude Comparator

A comparator that compares two binary numbers (each number having 2 bits) and produces
three outputs based on the relative magnitudes of given binary bits is called a 2-bit magnitude
comparator. Truth Table

A0 Bl BO A<B A=B A>B
Al
0
0 0 0 0 1 0
0 0
0 0 1 1 0
0
0 0 1 0 1 0
0 0
0 1 1 1 0
1
0 1 0 0 0 0
0 0
1 0
1
0
1
0 0 0
1 1 0 1
0 0
1 1
1
1
0
1 0 1
0 0 0 0

1 1
0 0 0
1 0 1 0 0 1 0
1 1 1 1 0 0
0
0 0 0 0
1 1 1
0 1 0 0 1
L 1
1 0 0 0 1
1 1
0
1 1 1 1 0 1
The truth table derives the expressions of A<B, A>B, and A=B as below
A< B- A1'B1'+ A0'B1B0 + A1’A0'BO
A>B- A1B1' + A0OB1'B0’ + A1A0B0O’
A=B- (A0 Ex— Nor B0O) (A1 Ex— Nor B1)
With these expressions, the Circuit diagram can be as follows
Al A0
- —| / j / —|
%T“\ A<B

UNIT-3

Sequential Logic Circuits

Sequential circuit contains a set of inputs and outputs. The outputs of sequential circuit depend
not only on the combination of present inputs but also on the previous outputs. Previous output
is nothing but the present state. Therefore, sequential circuits contain combinational circuits

along with memory storage elements. Some sequential circuits may not contain combinational
circuits, but only memory elements.

Inputs C—————> —————> outputs

Combinational

,::> Eiteult
-

Memory <::4
.

Elements

Following table shows the differences between combinational circuits and sequential circuits.

Combinational Circuits Sequential Circuits
Outputs depend only on present Outputs depend on both present inputs and
inputs. present state.
Feedback path is not present. Feedback path is present.
Memory elements are not required. Memory elements are required.
Clock signal is not required. Clock signal is required.
Easy to design. Difficult to design.

Types of Sequential Circuits

Following are the two types of sequential circuits -

« Asynchronous sequential circuits
« Synchronous sequential circuits

Asynchronous sequential circuits

If some or all the outputs of a sequential circuit do not change affect with respect to active
transition of clock signal, then that sequential circuit is called as Asynchronous sequential
circuit. That means, all the outputs of asynchronous sequential circuits do not change affect

at the same time. Therefore, most of the outputs of asynchronous sequential circuits are not
in synchronous with either only positive edges or only negative edges of clock signal.

Synchronous sequential circuits

If all the outputs of a sequential circuit change affect with respect to active transition of clock
signal, then that sequential circuit is called as Synchronous sequential circuit. That means,
all the outputs of synchronous sequential circuits change affect at the same time. Therefore,
the outputs of synchronous sequential circuits are in synchronous with either only positive
edges or only negative edges of clock signal.

Clock Signal and Triggering

Clock signal
Clock signal is a periodic signal and its ON time and OFF time need not be the same. We can

represent the clock signal as a square wave, when both its ON time and OFF time are same.
This clock signal is shown in the following figure.

SV

owv _

e S
Time Period

Types of Triggering

Following are the two possible types of triggering that are used in sequential circuits.

. Level triggering
. Edge triggering

Level triggering

There are two levels, namely logic High and logic Low in clock signal. Following are the two
types of level triggering.

. Positive level triggering
. Negative level triggering

If the sequential circuit is operated with the clock signal when it is in Logic High, then that
type of triggering is known as Positive level triggering. It is highlighted in below figure.

If the sequential circuit is operated with the clock signal when it is in Logic Low, then that type
of triggering is known as Negative level triggering. It is highlighted in the following figure.

Edge triggering

There are two types of transitions that occur in clock signal. That means, the clock signal
transitions either from Logic Low to Logic High or Logic High to Logic Low.

Following are the two types of edge triggering based on the transitions of clock signal.
. Positive edge triggering
. Negative edge triggering
If the sequential circuit is operated with the clock signal that is transitioning from Logic Low to

Logic High, then that type of triggering is known as Positive edge triggering. It is also
called as rising edge triggering. It is shown in the following figure.

If the sequential circuit is operated with the clock signal that is transitioning from Logic High to
Logic Low, then that type of triggering is known as Negative edge triggering. It is also called
as falling edge triggering. It is shown in the following figure.

4 Y ¥ Y

There are two types of memory elements based on the type of triggering that is suitable to
operate it.

. Latches
. Flip-flops

Latches operate with enable signal, which is level sensitive. Whereas, flip-flops are edge
sensitive.

There are 4 types of flip flops:

. SR Flip-Flop
. D Flip-Flop
. JK Flip-Flop

. T Flip-Flop SR Flip-Flop

SR flip-flop operates with only positive clock transitions or negative clock transitions. Whereas,
SR latch operates with enable signal.

The circuit diagram of SR flip-flop is shown in the following figure.

| r

clock —=

e] >: Q

This circuit has two inputs S & R and two outputs Q& Q’. The operation of SR flipflop is similar
to SR Latch. But, this flip-flop affects the outputs only when positive transition of the clock
signal is applied instead of active enable.

The following table shows the state table of SR flip-flop.

S R Q
t+1

0 0 Q

0 1 0

1 0 1

1 1 -

Here, Q & Qt+1 are present state & next state respectively. So, SR flip-flop can be used for
one of these three functions such as Hold, Reset & Set based on the input conditions, when
positive transition of clock signal is applied.

D Flip-Flop

D flip-flop operates with only positive clock transitions or negative clock transitions. Whereas,
D latch operates with enable signal. That means, the output of D flip-flop is insensitive to the
changes in the input, D except for active transition of the clock signal.

The circuit diagram of D flip-flop is shown in the following figure.

D

4

CLK

This circuit has single input D and two outputs Q & Q'. The operation of D flip-flop is similar to
D Latch. But, this flip-flop affects the outputs only when positive transition of the clock signal
is applied instead of active enable.

The following table shows the state table of D flip-flop.
D Qt+1

Therefore, D flip-flop always Hold the information, which is available on data input, D of earlier
positive transition of clock signal.

D flip-flops can be used in registers, shift registers and some of the counters.

JK Flip-Flop
JK flip-flop is the modified version of SR flip-flop. It operates with only positive clock transitions
or negative clock transitions.

The circuit diagram of JK flip-flop is shown in the following figure.

This circuit has two inputs J & K and two outputs Q & Q’. The operation of JK flip-flop is similar
to SR flip-flop.

The following table shows the state table of JK flip-flop.

[@ Q
[B

J K Qt+1
0 0 Q
0 1 0
1 0 1
1 1 Q'

Here, Q & Qt+1 are present state & next state respectively. So, JK flip-flop can be used for
one of these four functions such as Hold, Reset, Set & Complement of present state based on
the input conditions, when positive transition of clock signal is applied. Master-Slave JK Flip
Flop

In "JK Flip Flop", when both the inputs and CLK set to 1 for a long time, then Q output toggle
until the CLK is 1. Thus, the uncertain or unreliable output produces. This problem is referred
to as a race-round condition in JK flip-flop and avoided by ensuring that the CLK set to 1
only for a very short time.

Explanation

The master-slave flip flop is constructed by combining two J K flip flop. These flip flops are
connected in a series configuration. In these two flip flops, the 1st flip flop work as "master",
called the master flip flop, and the 2nd work as a "slave", called slave flip flop.

In "master-slave flip flop", apart from these two flip flops, an inverter or NOT gate is also used.
For passing the inverted clock pulse to the "slave" flip flop, the inverter is connected to the
clock's pulse. In simple words, when CP set to false for "master”, then CP is set to true for
"slave", and when CP set to true for "master"”, then CP is set to false for "slave".

Master Slave
Set » J Q >] Q =
Reset —y—1—> K Q (> K Q
Clk
Master-slave JK Flip-Flop
Working:

o When the clock pulse is true, the slave flip flop will be in the isolated state, and the
system's state may be affected by the J and K inputs. The "slave" remains isolated
until the CP is 1. When the CP set to 0, the master flip-flop passes the information to
the slave flip flop to obtain the output.

o The master flip flop responds first from the slave because the master flip flop is the
positive level trigger, and the slave flip flop is the negative level trigger.

o The output Q'=1 of the master flip flop is passed to the slave flip flop as an input K
when the input J set to 0 and K set to 1. The clock forces the slave flip flop to work as
reset, and then the slave copies the master flip flop.

o When J=1, and K=0, the output Q=1 is passed to the J input of the slave. The clock's

negative transition sets the slave and copies the master.

o The master flip flop toggles on the clock's positive transition when the inputs J and K

set to 1. At that time, the slave flip flop toggles on the clock's negative transition.

o The flip flop will be disabled, and Q remains unchanged when both the inputs of the JK
flip flop set to O.

Timing Diagram of a Master Flip Flop:

Clock

Qm : . : : E e

Qs———— E :] : —

o When the clock pulse set to 1, the output of the master flip flop will be one until the
clock input remains 0.

o When the clock pulse becomes high again, then the master's output is 0, which will be
set to 1 when the clock becomes one again.

o The master flip flop is operational when the clock pulse is 1. The slave's output remains
0 until the clock is not set to 0 because the slave flip flop is hot operational.

o The slave flip flop is operational when the clock pulse is 0. The output of the master
remains one until the clock is not set to 0 again.

o Toggling occurs during the entire process because the output changes once in the

cycle.

T Flip-Flop

T flip-flop is the simplified version of JK flip-flop. It is obtained by connecting the same input
‘T’ to both inputs of JK flip-flop. It operates with only positive clock transitions or negative clock
transitions.

The circuit diagram of T flip-flop is shown in the following figure.

L

CLK

-
[_D— :

C

This circuit has single input T and two outputs Q & Q’. The operation of T flip-flop is same as
that of JK flip-flop. Here, we considered the inputs of JK flip-flop as J = T and K =T in order
to utilize the modified JK flip-flop for 2 combinations of inputs. So, we eliminated the other two
combinations of J & K, for which those two values are complement to each other in T flipflop.

The following table shows the state table of T flip-flop.

D Q
t+1

1 Q

Here, Q & Qt+1 are present state & next state respectively. So, T flip-flop can be used for one
of these two functions such as Hold, & Complement of present state based on the input
conditions, when positive transition of clock signal is applied.

The output of T flip-flop always toggles for every positive transition of the clock signal, when
input T remains at logic High 11. Hence, T flip-flop can be used in counters.

UNIT-4
Registers, memories and PLD
Shift register

* Flip flops can be used to store a single bit of binary data (1or 0).

* However, in order to store multiple bits of data, we need multiple flip flops. N flip flops
are to be connected in an order to store n bits of data.

* ARegister is a device which is used to store such information. It is a group of flip flops
connected in series used to store multiple bits of data.

« The information stored within these registers can be transferred with the help of shift
registers.

» Shift Register is a group of flip flops used to store multiple bits of data. The bits stored
in such registers can be made to move within the registers and in/out of the registers
by applying clock pulses.

* An n-bit shift register can be formed by connecting n flip-flops where each flip flop
stores a single bit of data.

Shift registers are basically of 4 types. These are:

1. Serial In Serial Out shift register

2. Serial In parallel Out shift register
3. Parallel In Serial Out shift register
4. Parallel In parallel Out shift register

Serial-In Serial-Out Shift Register (SISO) —

The shift register, which allows serial input (one bit after the other through a single data line)
and produces a serial output is known as Serial-In Serial-Out shift register. Since there is only
one output, the data leaves the shift register one bit at a time in a serial pattern, thus the name
Serial-In Serial-Out Shift Register. The circuit consists of four D flip-flops which are connected
in a serial manner. All these flip-flops are synchronous with each other since the same clock

signal is applied to each flip flop. The main use of a SISO is to act as a delay element.

D— Dy Q; —» D; Q; ——» D, Qs ——» Dy Qy —»

FF-3 FF-2 FF-1 FR-g outPut
—0 —0 —o —0
Clk
i 0 0 0
D—>D; O0;——»D, Q—»D, Q —>»D Q——
Qutput
FF-3 FF-2 FF-1 0
—o0 — o —o — 0
Clk
1 1 0 0
D—»>D; 0,—>D, Q—>»D, Q —>»D Q —>
FF-3 FF-2 FF-1 Fro OUPUt
—a —0 —0 —o0

Clk

1 1 1
D—»Ds 0,—>»D, Q—>»D, Q —»D, Q—>
0
FF-3 FF-2 FF-1 FR0 PU

—0 —0 —0
Clk

D—>b al—p al—p a>bp al—
Output
FF-3 FF-2 FF-1 FF-0
Clk

Q3=D2 Q2=D1 Q1=DL‘I

Tk, Tk, Tk
m|l 1 e 0

Y
(2) 1 1Tt 1 1 o o
(3) 1 1 — 1 54 N 1 T
(4) 1 1 —tf— 1 1 P

— Direction of data travel

1 - 3 4 Stored word

ene L L L

0000
o, —|

1000
a, — |

1100
Q;

I 1110

Q,

1111
Q, |

Serial-In Parallel-Out shift Register (SIPO) —

The shift register, which allows serial input (one bit after the other through a single data line)
and produces a parallel output is known as Serial-In Parallel-Out shift register. The circuit
consists of four D flip-flops which are connected. The clear (CLR) signal is connected in
addition to the clock signal to all the 4 flip flops in order to RESET them. The output of the first
flip flop is connected to the input of the next flip flop and so on. All these flip-flops are
synchronous with each other since the same clock signal is applied to each flip flop. They are
used in communication lines where demultiplexing of a data line into several parallel lines is
required because the main use of the SIPO register is to convert serial data into parallel data.

Parallel Output

Serial Input m T D 0 T D 0 T D Q ___T

Flip Flop 1 Flip Flop 2 Flip Flop 3 Flip Flop 4

Clock

Clear

Parallel IN Serial OUT (PISO)

Inthe "Parallel IN Serial OUT" register, the data is entered in a parallel way, and the outcome
comes serially. A four-bit "Parallel IN Serial OUT" register is designed below. The input of
the flip flop is the output of the previous Flip Flop. The input and outputs are connected through
the combinational circuit. Through this combinational circuit, the binary input Bo, B1, B2, B3 are
passed. The shift mode and the load mode are the two modes in which the "PISO" circuit
works.

Load mode

The bits Bo, B1, B2, and Bs are passed to the corresponding flip flops when the second, fourth,
and sixth "AND" gates are active. These gates are active when the shift or load bar line set to
0. The binary inputs B0, B1, B2, and B3 will be loaded into the respective flip-flops when the
edge of the clock is low. Thus, parallel loading occurs.

Shift mode

The second, fourth, and sixth gates are inactive when the load and shift line set to 0. So, we
are not able to load data in a parallel way. At this time, the first, third, and fifth gates will be
activated, and the shifting of the data will be left to the right bit. In this way, the "Parallel IN
Serial OUT" operation occurs.

Parallel Inputs

Shift/Load

>

Output
4’.

FF-1 FF-2 FF-3 FF-4

| - " [F

A Parallel in Serial out (PISO) shift register us used to convert parallel data to serial data.

Parallel IN Parallel OUT (PIPO)

In"Parallel IN Parallel OUT", the inputs and the outputs come in a parallel way in the register.
The inputs Ao, A1, Az, and A, are directly passed to the data inputs Do, D1, D2, and D3 of the
respective flip flop. The bits of the binary input is loaded to the flip flops when the negative

clock edge is applied. The clock pulse is required for loading all the bits. At the output side,
the loaded bits appear.

| ------------- Parallel OQutput --——————————-—- |

B, B, B, B,
L*'% Q, L*'% Q, L*'q Q, L*J% Qo
FF-3 FF-2 FF-1 FF-0
’—D ’—D r:l
Clk
el | | |
QS Q: Q1 Q,

| ------------- Parallel Qutput - -—————————-—- |
Universal shift register

A Universal shift register is a register which has both the right shift and left shift with parallel
load capabilities. Universal shift registers are used as memory elements in computers. A
Unidirectional shift register is capable of shifting in only one direction. A bidirectional shift
register is capable of shifting in both the directions. The Universal shift register is a
combination design of bidirectional shift register and a unidirectional shift register with
parallel load provision

Parallel outputs

A A Ay A
Clear ———-9

>0
S
=2
>0
S
—
> 0)
=]
Ml
>0
—

CLK ‘

§) —>

4% % -4)_{:1,'1' ax1 4 %1

MUX MUX MUX MUX
8o = ‘

3210 340 37210 3210
| |

I | y

Serial ‘ Senial
input for ~—— input for
shift-right shift-left

I L I Iy

Parallel inputs

Basic connections —
1. The first input (zeroth pin of multiplexer) is connected to the output pin of the
corresponding flip-flop.
2. The second input (first pin of multiplexer) is connected to the output of the
veryprevious flip flop which facilitates the right shift.
3. The third input (second pin of multiplexer) is connected to the output of the verynext
flip-flop which facilitates the left shift.
4. The fourth input (third pin of multiplexer) is connected to the individual bits of the
input data which facilitates parallel loading.
The working of the Universal shift register depends on the inputs given to the select lines.

The register operations performed for the various inputs of select lines are as follows:

S1 SO Operation
0 0 No change
0 1 Shift right
1 0 Shift left
1 1 Parallel load

Counters

Counter is a sequential circuit. A digital circuit which is used for a counting pulses is known
counter. Counter is the widest application of flip-flops. It is a group of flip-flops with a clock
signal applied. Counters are of two types.

« Asynchronous or ripple counters. O Synchronous counters.

Asynchronous or ripple counters

The Asynchronous counter is also known as the ripple counter. Below is a diagram of the
2-bit Asynchronous counter in which we used two T flip-flops or two JK flip flopby setting
both of the inputs to 1 permanently. The external clock pass to the clock input of the first flip
flop, i.e., FF-A and its output, i.e., is passed to clock input of the next flip flop, i.e., FF-B.

Lo PN
High High
N Set o ¥ Set Ql—o
Clk
K Clr 4 K Clr]
1 1 2 c3 < 5
Clk
8]
1
1
< 1
00 (o] o
! 1 1
Lo
Q] D
Lo 1 2 3 (o]

Operation:

https://www.javatpoint.com/jk-flip-flop-in-digital-electronics
https://www.javatpoint.com/jk-flip-flop-in-digital-electronics

1. Condition 1: When both the flip flops are in reset condition.
Operation: The outputs of both flip flops, i.e., Qa Qs, will be O.

2. Condition 2: When the first negative clock edge passes.
Operation: The first flip flop will toggle, and the output of this flip flop will change
from O to 1. The output of this flip flop will be taken by the clock input of the next
flip flop. This output will be taken as a positive edge clock by the second flip flop.
This input will not change the second flip flop's output state because it is the
negative edge triggered flip flop. So, Qa=1and Qg =0

3. Condition 3: When the second negative clock edge is applied.
Operation: The first flip flop will toggle again, and the output of this flip flop will
change from 1 to 0. This output will be taken as a negative edge clock by the
second flip flop. This input will change the second flip flop's output state because it
is the negative edge triggered flip flop. So, Qa =0 and Qg = 1.

4. Condition 4: When the third negative clock edge is applied.
Operation: The first flip flop will toggle again, and the output of this flip flop will
change from 0 to 1. This output will be taken as a positive edge clock by the second
flip flop. This input will not change the second flip flop's output state because it is
the negative edge triggered flip flop. S0, Qa=1and Qg =1

5. Condition 5: When the fourth negative clock edge is applied.
Operation: The first flip flop will toggle again, and the output of this flip flop will
change from 1 to 0. This output will be taken as a negative edge clock by the
second flip flop. This input will change the output state of the second flip flop. So, Qa
=0and Qs =0

Classification of counters

Depending on the way in which the counting progresses, the synchronous or asynchronous
counters are classified as follows -

+ Up counters
« Down counters

- Up/Down counters
UP/DOWN Counter

Up counter and down counter is combined together to obtain an UP/DOWN counter. A mode
control (M) input is also provided to select either up or down mode. A combinational circuit is
required to be designed and used between each pair of flip-flop in order to achieve the up/down
operation.

« Type of up/down counters

- UP/DOWN ripple counters

- UP/DOWN synchronous counter
UP/DOWN Counter

Up counter and down counter is combined together to obtain an UP/DOWN counter. A mode
control (M) input is also provided to select either up or down mode. A combinational circuit is
required to be designed and used between each pair of flip-flop in order to achieve the
up/down operation.

« Type of up/down counters
- UP/DOWN ripple counters

UP/DOWN synchronous counter

UP/DOWN Ripple Counters

In the UP/DOWN ripple counter all the FFs operate in the toggle mode. So, either T flip-flops
or JK flip-flops are to be used. The LSB flip-flop receives clock directly. But the clock to every
other FF is obtained from (Q = Q bar) output of the previous FF.

UP counting mode (M=0) - The Q output of the preceding FF is connected to the
clock of the next stage if up counting is to be achieved. For this mode, the mode select
input M is at logic 0 (M=0).

DOWN counting mode (M=1) - If M = 1, then the Q bar output of the preceding FF is
connected to the next FF. This will operate the counter in the counting mode.

Example
3-bit binary up/down ripple counter.

3-bit — hence three FFs are required.

UP/DOWN - So a mode control input is essential.

For a ripple up counter, the Q output of preceding FF is connected to the clock input of
the next one.

For a ripple up counter, the Q output of preceding FF is connected to the clock input of
the next one.

For a ripple down counter, the Q bar output of preceding FF is connected to the clock
input of the next one.

Let the selection of Q and Q bar output of the preceding FF be controlled by the mode
control input M such that, If M = 0, UP counting. So, connect Q to CLK. IfM =1, DOWN
counting. So, connect Q bar to CLK.

Up
I—.:Dr
High High High
Set
J Q
Clock >
K ar @
FFO |
Down %
Clock
3 bit or Mod 8
Up counter Q,
<
When M =0
X
Q
Qy
3 bit or Mod 8
Down counter %
When M= 1 | %
3

Modulus Counter (MOD-N Counter)

The 2-bit ripple counter is called as MOD-4 counter and 3-bit ripple counter is called as MOD8
counter. So, in general, an n-bit ripple counter is called as modulo-N counter. Where, MOD
number = 2",

Type of modulus
« 2-bit up or down (MOD-4)
« 3-bit up or down (MOD-8)
« 4-bit up or down (MOD-16) Application of counters
- Frequency counters
- Digital clock
- Time measurement
« Ato D converter
« Frequency divider circuits
- Digital triangular wave generator.
Decade counter
A decade counter counts ten different states and then reset to its initial states. A simple decade
counter will count from 0 to 9 but we can also make the decade counters which can go through

any ten states between 0 to 15 (for 4 bit counter).
Clock

pulse Q3 Q2 Q1 QO
0 0 0 0 0

2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 0 0 0 0
Qo Q Q
Vee
v < —Js a Q
Ck ———of> o> >
1Kew®) Ken®

We see from circuit diagram that we have used NAND gate for Q3 and Q1 and feeding this to
clear input line because binary representation of 10 is—1010

And we see Q3 and Q1 are 1 here, if we give NAND of these two bits to clear input then
counter will be clear at 10 and again start from beginning.

Synchronous counters

If the "clock" pulses are applied to all the flip-flops in a counter simultaneously, then such a
counter is called as synchronous counter. 2-bit Synchronous up counter

The Ja and Ka inputs of FF-A are tied to logic 1. So, FF-A will work as a toggle flip-flop. The Jg

and Kz inputs are connected to Qa.

K.] K-

Operation
S.N. Condition
1 Initially let both the FFs be in the reset state
2 After 1st negative clock edge

3 After 2nd negative clock edge

4 After 3rd negative clock edge

5 After 4th negative clock edge

CLK

Operation

QsQa = 00 initially.

As soon as the first negative clock edge is
applied, FF-A will toggle and Qa will change
from O to 1.

But at the instant of application of negative
clock edge, Qa , Js = Kg = 0. Hence FF-B
will not change its state. So Qg will remain
0.

QeQa = 01 after the first clock pulse.

On the arrival of second negative clock
edge, FF-A toggles again and Qa changes
from 1 to O.

But at this instant Qa was 1. So Jg = Kg=1
and FF-B will toggle. Hence Qg changes
from O to 1.

QeQx = 10 after the second clock pulse.

On application of the third falling clock
edge, FF-A will toggle from 0 to 1 but there
is nho change of state for FF-B.

QeQa = 11 after the third clock pulse.

On application of the next clock pulse, Qa
will change from 1 to 0 as Qg will also
change from 1 to O.

QeQa = 00 after the fourth clock pulse.

4-bit synchronous counter

(Logic 1)
A
FFA FFE
— QAI J QE,
CLK Qg CLK Qg
K Qa K Qg K Q¢ K Qo

The external clock pulses (pulses to be counted) are fed directly to each of the J-K
flipflops in the counter chain and that both the J and K inputs are all tied together in
toggle mode, but only in the first flip-flop, flip-flop FFA (LSB) are they connected HIGH,
logic

“1” allowing the flip-flop to toggle on every clock pulse.

Then the synchronous counter follows a predetermined sequence of states in response
to the common clock signal, advancing one state for each pulse.

The J and K inputs of flip-flop FFB are connected directly to the output Qa of flipflop
FFA, but the J and K inputs of flip-flops FFC and FFD are driven from separate AND
gates which are also supplied with signals from the input and output of the previous
stage.

These additional AND gates generate the required logic for the JK inputs of the next
stage.

If we enable each JK flip-flop to toggle based on whether or not all preceding flip-flop
outputs (Q) are “HIGH” we can obtain the same counting sequence as with the
asynchronous circuit but without the ripple effect, since each flip-flop in this circuit will
be clocked at exactly the same time.

Then as there is no inherent propagation delay in synchronous counters, because all
the counter stages are triggered in parallel at the same time, the maximum operating
frequency of this type of frequency counter is much higher than that for a similar
asynchronous counter circuit.

o1 |

Clock Pulse

Clock
Pulzes

QA

1 14 15 16

:

(lsb.)

QB

Qac

Qp

Court g

UNIT-4

(m.s.b.)

0000 0001

1

Qoo 011 0100 Q101 0110 11 1000 1001 10

10

1011
1

1100

12

11
13

1110
14

ANE]
15

0000
0

L

g 7 a g

a =

8085 Microprocessor

A Microprocessor is a multipurpose, programmable, clock-driven, register-based
electronic device that reads binary instructions from a storage device called memory,
accepts binary data as input and processes data according to those instructions and
provide results as output.

Microprocessor is a controlling unit of a micro-computer, fabricated on a small chip
capable of performing ALU (Arithmetic Logical Unit) operations and communicating
with the other devices connected to it.

Microprocessor consists of an ALU, register array, and a control unit.

ALU performs arithmetical and logical operations on the data received from the
memory or an input device.

Register array consists of registers identified by letters like B, C, D, E, H, L and
accumulator.

The control unit controls the flow of data and instructions within the computer.

Block Diagram of a Basic Microcomputer

Microprocessor

Input Output
Device ~ > (ALU +Registerarray + . Device
Control unit)
Memory
How does a Microprocessor Work?

The microprocessor follows a sequence: Fetch, Decode, and then Execute.

Initially, the instructions are stored in the memory in a sequential order.

The microprocessor fetches those instructions from the memory, then decodes it and
executes those instructions till STOP instruction is reached.

Later, it sends the result in binary to the output port. Between these processes, the
register stores the temporarily data and ALU performs the computing functions.

Classification of Microprocessor

Microprocessor is classified into two categories- RISC

& CISC

RISC Processor

RISC stands for Reduced Instruction Set Computer.

It is designed to reduce the execution time by simplifying the instruction set of the
computer.

Using RISC processors, each instruction requires only one clock cycle to execute
results in uniform execution time.

This reduces the efficiency as there are more lines of code, hence more RAM is
needed to store the instructions.

The compiler also has to work more to convert high-level language instructions into
machine code.

Characteristics of RISC
The major characteristics of a RISC processor are as follows -

It consists of simple instructions.
It supports various data-type formats.
It utilizes simple addressing modes and fixed length instructions for pipelining.

It supports register to use in any context. [One cycle execution time.
“LOAD” and “STORE” instructions are used to access the memory location. 0 |t

consists of larger number of registers.
It consists of less number of transistors.

CISC Processor

CISC stands for Complex Instruction Set Computer.

It is designed to minimize the number of instructions per program, ignoring the number
of cycles per instruction.

The emphasis is on building complex instructions directly into the hardware.

The compiler has to do very little work to translate a high-level language into assembly
level language/machine code because the length of the code is relatively short, so very
little RAM is required to store the instructions.

Characteristics of CISC

Variety of addressing modes.

Larger number of instructions.

Variable length of instruction formats.

Several cycles may be required to execute one instruction.
Instruction-decoding logic is complex.

* One instruction is required to support multiple addressing modes.

8085 Microprocessor
It is an 8-bit microprocessor designed by Intel in 1977 using NMOS technology.

It has the following configuration — O
8-bit data bus
» 16-bit address bus, which can address upto 64KB
* A 16-bit program counter
* A 16-bit stack pointer
» Six 8-bit registers arranged in pairs: BC, DE, HL
* Requires +5V supply to operate at 3 MHZ single phase clock It is used in
washing machines, microwave ovens, mobile phones, etc.

8085 Microprocessor — Functional Units

RST RST RST
INTR INTA 5.5 6.5 7.5 TRAP SllD SOD

3) e o R | :
r Interrupt control |
i g

‘ 8-Bit Internal Data Bus

| Accumulator | SSpotary ‘ F]agsJ Instruction
||__register | & register |
Instruction
) AL decoder
Xy 3 Tfmiqg and Control Circuit

— A T b s L F L L1

CLK READY Rp wi S S; 10/M HOLD RESET
o RD WR ALE 0 1 / Address Bus Data

Ag—As Address Bus
AD, -AD,;

8085 consists of the following functional units -

Accumulator

It is an 8-bit register used to perform arithmetic, logical, I/O & LOAD/STORE operations. It is
connected to internal data bus & ALU. Arithmetic and logic unit

As the name suggests, it performs arithmetic and logical operations like Addition, Subtraction,
AND, OR, etc. on 8-bit data.

General purpose register

There are 6 general purpose registers in 8085 processor, i.e., B, C, D, E, H & L. Each register
can hold 8-bit data.

These registers can work in pair to hold 16-bit data and their pairing combination is like B-C,
D-E & H-L.

Program counter

It is a 16-bit register used to store the memory address location of the next instruction to be
executed. Microprocessor increments the program whenever an instruction is being executed,

so that the program counter points to the memory address of the next instruction that is going
to be executed.
Stack pointer
It is also a 16-bit register works like stack, which is always incremented/decremented by 2
during push & pop operations. Temporary register
It is an 8-bit register, which holds the temporary data of arithmetic and logical operations. Flag
register
It is an 8-bit register having five 1-bit flip-flops, which holds either 0 or 1 depending upon the
result stored in the accumulator.
These are the set of 5 flip-flops — Sign (S)-
set to 1 if result is negative.
Zero (Z)- set to 1 if result is zero.
Aucxiliary Carry (AC)- set to 1 if carry arises from 3 bit to 4" bit.
Parity (P)- set to 1 if result has even no. of 1.
Carry (CS)- set to 1 if carry arises after arithmetic and logical operation. Its bit
position is shown in the following table —
B7 B6 B5 B4 B3 B2 Bl BO
s [z [x [ac |x |p [x Jcs |

Instruction register and decoder

It is an 8-bit register. When an instruction is fetched from memory then it is stored in the
Instruction register. Instruction decoder decodes the information present in the Instruction
register.

Timing and control unit

It provides timing and control signal to the microprocessor to perform operations. Following
are the timing and control signals, which control external and internal circuits — Control
Signals: READY, RD’, WR’, ALE

Status Signals: S0, S1, IO/M’

DMA Signals: HOLD, HLDA

RESET Signals: RESET IN, RESET OUT

Interrupt control

As the name suggests it controls the interrupts during a process. When a microprocessor is
executing a main program and whenever an interrupt occurs, the microprocessor shifts the
control from the main program to process the incoming request. After the request is completed,
the control goes back to the main program.

There are 5 interrupt signals in 8085 Microprocessor: INTR, RST 7.5, RST 6.5, RST 5.5,
TRAP.

Serial Input/output control

It controls the serial data communication by using these two instructions: SID (Serial input
data) and SOD (Serial output data).

Address buffer and address-data buffer

The content stored in the stack pointer and program counter is loaded into the address buffer
and address-data buffer to communicate with the CPU. The memory and I/O chips are
connected to these buses; the CPU can exchange the desired data with the memory and I/O
chips.

Address bus and data bus

Data bus carries the data to be stored. It is bidirectional, whereas address bus carries the
location to where it should be stored and it is unidirectional. It is used to transfer the data &
Address 1/O devices.

Pin diagram and description

X, —{]

Xo —{]
Reset out —-a-—{]
SOD —--—
SID —»{}
Trap -—-—
RST 7.5 —={]
RST 6.5 --—{]
RST 5.5 —»={]
INTR —»={]10
INTA -—-—{] 11
ADg —-m»{]12
AD, —--m»{]13
AD, -w»{|14
AD; -m»{]|15
AD, —--»{]|16
ADgs; --m»{117
ADg -m»{|18
AD,; --»{]19
Vss ——{]20

Vcc
HOLD
HLDA
CLK (out)
Reset in
Ready
10/M

CONOOAWNS

3
3
3
3
2
2
2
2
2
2
2
2
2

The pins of 8085 microprocessor can be classified into seven groups -

Address bus

A15-A8, it carries the most significant 8-bits of memory/IO address.

Data bus

AD7-ADO, it carries the least significant 8-bit address and data bus.

Control and status signals

These signals are used to identify the nature of operation. There are 3 control signal and 3
status signals.

Three control signals are RD, WR & ALE.

RD - This signal indicates that the selected 10 or memory device is to be read and is ready
for accepting data available on the data bus.

WR - This signal indicates that the data on the data bus is to be written into a selected memory
or 1O location.

ALE - It is a positive going pulse generated when a new operation is started by the
microprocessor. When the pulse goes high, it indicates address. When the pulse goes down
it indicates data.

Three status signals are I0/M, SO & S1.

IO/M

This signal is used to differentiate between IO and Memory operations, i.e. when it is high
indicates |0 operation and when it is low then it indicates memory operation. S1 & SO These
signals are used to identify the type of current operation.

Power supply

There are 2 power supply signals - VCC & VSS. VCC indicates +5v power supply and VSS
indicates ground signal.

Clock signals

There are 3 clock signals, i.e. X1, X2, CLK OUT.

X1, X2 - A crystal (RC, LC N/W) is connected at these two pins and is used to set frequency
of the internal clock generator. This frequency is internally divided by 2.

CLK OUT - This signal is used as the system clock for devices connected with the
microprocessor.

Interrupts & externally initiated signals

Interrupts are the signals generated by external devices to request the microprocessor to
perform a task. There are 5 interrupt signals, i.e., TRAP, RST 7.5, RST 6.5, RST 5.5, and
INTR. We will discuss interrupts in detail in interrupts section.

INTA - It is an interrupt acknowledgment signal.
RESET IN - This signal is used to reset the microprocessor by setting the program counter to
zero.

RESET OUT - This signal is used to reset all the connected devices when the microprocessor
is reset.

READY - This signal indicates that the device is ready to send or receive data. If READY is
low, then the CPU has to wait for READY to go high.

HOLD - This signal indicates that another master is requesting the use of the address and
data buses.

HLDA (HOLD Acknowledge) - It indicates that the CPU has received the HOLD request and
it will relinquish the bus in the next clock cycle. HLDA is set to low after the HOLD signal is
removed.

Serial I/O signhals

There are 2 serial signals, i.e., SID and SOD and these signals are used for serial
communication.

SOD (Serial output data line) — The output SOD is set/reset as specified by the SIM
instruction.

SID (Serial input data line) — The data on this line is loaded into accumulator whenever a
RIM instruction is executed.

Stack, stack top and stack pointer

* The stackis a LIFO (last in, first out) data structure implemented in the RAM area and
is used to store addresses and data when the microprocessor branches to a
subroutine.

* Then the return address used to get pushed on this stack.

» Also, to swap values of two registers and register pairs we use the stack as well.

» The Stack Pointer register will hold the address of the top location of the stack.

* On a stack, we can perform two operations.

*+ PUSH and POP.

* In case of PUSH operation, the SP register gets decreased by 2 and new data item
used to insert on to the top of the stack.

* Incase of POP operation, the data item will have to be deleted from the top of the stack
and the SP register will get increased by the value of 2.

PUSH OPERATION
_— -)
_/
Registor Contents Stk
= ;
: 25 50 c - NL;:;"I‘“
o +|E 2004 sP
H $ L 2608
- s
After PUSH operstion:
Stack
Al F Availat
B 25 50 i" s
o = 50 |2603¢-sP
L i — R
[7 SP 2603 - e

Befors POP operstion:
Fogister Contents Stack
A - fighie
8| . xx XX c . sp
of e ™
L SP 2803 ' 2605 :
After POP operation:
Register Contents -
Al . | F 2601
8| Az | 50 2002
N - e L~
"H——' T T
SP 2605
‘—[F 2605 «SP

Interrupts

When microprocessor receives any interrupt signal from peripheral(s) which are
requesting its services, it stops its current execution and program control is transferred
to a sub-routine by generating CALL signal and after executing sub-routine by
generating RET signal again program control is transferred to main program from
where it had stopped.

When microprocessor receives interrupt signals, it sends an acknowledgement (INTA)
to the peripheral which is requesting for its service.

Interrupts can be classified into various categories based on different parameters:

1. Hardware and Software Interrupts —

When microprocessors receive interrupt signals through pins (hardware) of microprocessor,
they are known as Hardware Interrupts. There are 5 Hardware Interrupts in 8085
Microprocessor. They are — INTR, RST 7.5, RST 6.5, RST 5.5, TRAP.

Software Interrupts are those which are inserted in between the program which means these
are mnemonics of microprocessor. There are 8 software interrupts in 8085 Microprocessor.
They are — RST 0, RST 1, RST 2, RST 3, RST 4, RST 5, RST 6, RST 7.

2. Vectored and Non-Vectored Interrupts —

Vectored Interrupts are those which have fixed vector address (starting address of
subroutine) and after executing these, program control is transferred to that address. Vector
Addresses are calculated by the formula 8 * TYPE

TRAP (RST 4.5) 24 H
RST 5.5 2CH
RST 6.5 34 H
RST 7.5 3CH

For Software interrupts vector addresses are given by:

RST O 00 H
RST 1 08 H
RST 2 10H
RST 3 18 H
RST 4 20H
RST 5 28 H
RST 6 30H

RST 7 38 H

Non-Vectored Interrupts are those in which vector address is not predefined. The interrupting
device gives the address of sub-routine for these interrupts. INTR is the only nonvectored
interrupt in 8085 Microprocessor.

3. Maskable and Non-Maskable Interrupts —

Maskable Interrupts are those which can be disabled or ignored by the microprocessor.
These interrupts are either edge-triggered or level-triggered, so they can be disabled. INTR,
RST 7.5, RST 6.5, RST 5.5 are maskable interrupts in 8085 Microprocessor.

Non-Maskable Interrupts are those which cannot be disabled or ignored by microprocessor.
TRAP is a non-maskable interrupt. It consists of both level as well as edge triggering and is
used in critical power failure conditions.

Priority of Interrupts —

When microprocessor receives multiple interrupt requests simultaneously, it will execute the

interrupt service request (ISR) according to the priority of the interrupts.
Highest

TRAP
RST 7.5

RST 6.5

N

Lowvwest
Instruction for Interrupts —
i. Enable Interrupt (EI) — The interrupt enable flip-flop is set and all interrupts are enabled
following the execution of next instruction followed by EI. No flags are affected. After a system
reset, the interrupt enable flip-flop is reset, thus disabling the interrupts. This instruction is
necessary to enable the interrupts again (except TRAP). ii. Disable Interrupt (DI) — This
instruction is used to reset the value of enable flip-flop hence disabling all the interrupts. No
flags are affected by this instruction.
iii. Set Interrupt Mask (SIM) — It is used to implement the hardware interrupts (RST 7.5,
RST 6.5, RST 5.5) by setting various bits to form masks or generate output data via the Serial
Output Data (SOD) line. First the required value is loaded in accumulator then SIM will take
the bit pattern from it.

SOD SOE X RST 7.5 MSE M 7.

~
Serial Data
Out
o Jnmasked

Enable Serial Data 1 Maked

(4]
()]
(0)]
2
-9
)]
0}

O - ignore Bit 7 < .
1 Send bit 7 to

soD

Not used

Reset RST 7.5

iv. Read Interrupt Mask (RIM) — This instruction is used to read the status of the hardware
interrupts (RST 7.5, RST 6.5, RST 5.5) by loading into the A register a byte which defines the

condition of the mask bits for the interrupts. It also reads the condition of SID (Serial Input
Data) bit on the microprocessor.

7 6 5 4 3 2 1 0
SID P75 P 6.5 P 5.5 IE M7.5 M 6.5 M 5.5

\ >
Serial Data
In
r -1 ‘v'_" A‘
0 - No request [» 0-Unmasked

pending 1 - Maked
1 - Interrupt request
pending

Value of Interrupt
Enable flip-flop

- >

Opcodes and operands

» Instruction is divided into two parts: opcodes and operands.

» The opcode is the instruction that is executed by the CPU and the operand is the data
or memory location used to execute that instruction.

* Anoperand (written using hexadecimal notation) provides the data itself, or the location
where the data to be processed is stored.

* Some instructions do not require an operand and some may require more than one
operand.

Instruction size
* The 8085 instruction set is classified into 3 categories by considering the length of the
instructions.
* Three types of instruction are: 1l-byte instruction, 2-byte instruction, and 3-byte
instruction.

1. One-byte instructions —

In 1-byte instruction, the opcode and the operand of an instruction are represented in one
byte.

Example- MOV A,B

2. Two-byte instructions —

Two-byte instruction is the type of instruction in which the first 8 bits indicates the opcode
and the next 8 bits indicates the operand.

Example- MVI A,34H

3. Three-byte instructions —

Three-byte instruction is the type of instruction in which the first 8 bits indicates the opcode
and the next two bytes specify the 16-bit address. The low-order address is represented
in second byte and the high-order address is represented in the third byte. Example- LDA
2000H

Instruction set of 8085 Microprocessor
8085 instruction set is classified in 5 groups- Data transfer
group

Arithmetic group

Logical group

Branch
Machin

control group
e control group

Data transfer group

Data transfer instructions are the instructions which transfers data in the microprocessor. They

are also called copy instructions.

Opcode Operand Explanation Example
MOV R1,R2 Move the data from R2 to R1 MOV A,B
MOV R,M Move data from memory location to R MOV B,M
MVI R,8-bit data Move the immediate 8-bit data to R MVI

C,34H
MVI M, 8-bit data Move the immediate 8-bit data to memory MVI
location M,23H
LDA 16-bit address Load the data from 16-bit address to ACC LDA
2000H
STA 16-bit address Store the data of ACC to 16-bit address STA
2500H
LHLD 16-bit address Directly loads at H & L registers LHLD 2050
SHLD 16-bit address directly stores from H & L registers SHLD
2050
LXI rp, 16-bit data loads the specified register pair with data LXI H,
3050
XCHG exchanges H with D, and L with E XCHG
PUSH rp pushes rp to the stack PUSH H
POP rp pops the stack to rp POP H
IN 8-bit port inputs contents of the specified port to A IN 01
address
ouT 8-bit port outputs contents of A to the specified port OuUT 02
address

Arithmetic group

Arithmetic Instructions are the instructions which perform basic arithmetic operations such as
addition, subtraction and a few more. In 8085 Microprocessor, the destination operand is
generally the accumulator. In 8085 Microprocessor, the destination operand is generally the
accumulator.

Opcode Operand Explanation Example
ADD R A=A+R ADD B
ADD M A=A+M ADD M
ADI 8-bit data A = A + 8-bit data ADI 50
ADC R A=A+ R+ prev. carry ADC B
ADC M A=A+ Mc + prev. carry ADC M
ACI 8-bit data A = A + 8-bit data + prev. carry ACI 50
SUB R A=A-R SUB B
SUB M A=A-M SUB M
Sul 8-bit data A = A — 8-bit data SuUIl 50

SBB R A=A—-R-prev. carry SBB B
SBB M A=A-M -prev. carry SBB M
SBI 8-bit data A = A — 8-bit data — prev. carry SBI 50
INR R R=R+1 INR B

INR M M=M+1 INR M

INX r.p. rp.=rp.+1 INX H

DCR R R=R-1 DCR B
DCR M M=M-1 DCR M
DCX r.p. rp.=rp.—-1 DCXH
DAD r.p. HL = HL + r.p. DAD H

Logical group
Logical instructions are the instructions which perform basic logical operations such as AND,
OR, etc. In 8085 Microprocessor, the destination operand is always the accumulator. Here
logical operation works on a bitwise level.

Opcode Operand Explanation Example
ANA R A=AANDR ANA B
ANA M A=AANDM ANA M
ANI 8-bit data A = A AND 8-bit data ANI 50
ORA R A=AORR ORAB
ORA M A=AORM ORA M
ORI 8-bit data A = A OR 8-bit data ORI 50
XRA R A=AXORR XRA B
XRA M A=AXORM XRA M
XRI 8-bit data A = A XOR 8-bit data XRI 50
CMA A = 1’s compliment of A CMA
CMP R Compares R with A and triggers the flag register CMP B
CMP M Compares Mc with A and triggers the flag register CMP M

Compares 8-bit data with A and triggers the flag
CPI 8-bit data register CPI150
RRC Rotate accumulator right without carry RRC
RLC Rotate accumulator left without carry RLC
RAR Rotate accumulator right with carry RAR
RAL Rotate accumulator left with carry RAR
CMC Compliments the carry flag CMC
STC Sets the carry flag STC

Branch group
Branching instructions refer to the act of switching execution to a different instruction sequence
as a result of executing a branch instruction. The three types of branching instructions are:

1. Jump (unconditional and conditional)
2. Call (unconditional and conditional)

3. Return (unconditional and conditional)

1. Jump Instructions — The jump instruction transfers the program sequence to the memory
address given in the operand based on the specified flag. Jump instructions are 2 types:

Unconditional Jump Instructions and Conditional Jump Instructions.

(@)

memory address.

JMP 16-bit address

Example- JMP 2050

Jumps to the address

Unconditional Jump Instructions: Transfers the program sequence to the described

(b) Conditional Jump Instructions: Transfers the program sequence to the described

memory address only if the condition in satisfied.
Opcode | Operand Explanation Example
JC Address Jumps to the address if carry flag is 1 | JC 2050
JNC Address Jumps to the address if carry flagis 0 | JNC 2050
Jz Address Jumps to the address if zero flagis 1 | JZ 2050
JNZ Address Jumps to the address if zero flag is 0 | JNZ 2050
JPE Address Jumps to the address if parity flag is 1 | JPE 2050
JPO Address Jumps to the address if parity flag is 0 | JPO 2050
M Address Jumps to the address if sign flagis 1 | JM 2050
JP Address Jumps to the address if sign flag O JP 2050
JC Address Jumps to the address if carry flag is 1 | JC 2050
JNC Address Jumps to the address if carry flag is 0 | JINC 2050
Jz Address Jumps to the address if zero flagis 1 | JZ 2050
JNZ Address Jumps to the address if zero flag is 0 | JNZ 2050
JPE Address Jumps to the address if parity flag is 1 | JPE 2050
JPO Address Jumps to the address if parity flag is 0 | JPO 2050
IM Address Jumps to the address if sign flagis 1 | JM 2050
JP Address Jumps to the address if sign flag 0 JP 2050

2. Call Instructions — The call instruction transfers the program sequence to the memory
address given in the operand. Before transferring, the address of the next instruction after
CALL is pushed onto the stack. Call instructions are 2 types: Unconditional Call Instructions
and Conditional Call Instructions.

(&) Unconditional Call Instructions: It transfers the program sequence to the memory
address given in the operand.

CALL 16-address Unconditionally calls

Example- CALL 2050

(b) Conditional Call Instructions: Only if the condition is satisfied, the instructions executes.

Opcode | Operand Explanation Example
CcC Address Call if carry flag is 1 CC 2050
CNC Address Call if carry flag is O CNC 2050
Ccz Address Calls if zero flag is 1 CZ 2050
CNz Address Calls if zero flag is O CNZ 2050
CPE Address Calls if parity flag is 1 CPE 2050
CPO Address Calls if parity flag is O CPO 2050
CM Address Calls if sign flag is 1 CM 2050
CP Address Calls if sign flag is O CP 2050

3. Return Instructions — The return instruction transfers the program sequence from the
subroutine to the calling program. Return instructions are 2 types: Unconditional Jump
Instructions and Conditional Jump Instructions.

(a) Unconditional Return Instruction: The program sequence is transferred
unconditionally from the subroutine to the calling program. RET Return from the
subroutine unconditionally
(b) Conditional Return Instruction: The program sequence is transferred
unconditionally from the subroutine to the calling program only is the condition is satisfied.

Opcode | Operand Explanation Example

RC Return from the subroutine if carry flag is 1| RC

RNC Return from the subroutine if carry flag is 0 RNC

Rz Return from the subroutine if zero flag is 1| RZ

RNZ Return from the subroutine if zero flag is 0 RNZ

RPE Return from the subroutine if parity flag is| RPE
1

RPO Return from the subroutine if parity flag is| RPO
0

RM Returns from the subroutine if sign flag is 1 RM

RP Returns from the subroutine if sign flag is 0 RP

Machine control group

Opcode | Operand Meaning Explanation

NOP No operation No operation is performed, i.e., the instruction is
fetched and decoded.

HLT Halt and enter wait The CPU finishes executing the current

state instruction and stops further execution. An
interrupt or reset is necessary to exit from the halt
state.

DI Disable interrupts The interrupt enable flip-flop is reset and all the
interrupts are disabled except TRAP.

El Enable interrupts The interrupt enable flip-flop is set and all the
interrupts are enabled.

RIM Read interrupt mask | This instruction is used to read the status of
interrupts 7.5, 6.5, 5.5 and read serial data input
bit.

SIM Set interrupt mask This instruction is used to implement the interrupts
7.5, 6.5, 5.5, and serial data output.

Addressing modes

The term addressing modes refers to the way in which the operand of an instruction is
specified.

Types of addressing modes —

In 8085 microprocessor there are 5 types of addressing modes:

Immediate Addressing Mode —

In immediate addressing mode the source operand is always data. If the data is 8-bit, then the
instruction will be of 2 bytes, if the data is of 16-bit then the instruction will be of 3 bytes.
Examples:

MVI B,45 (move the data 45H immediately to register B)

LXI H,3050 (load the H-L pair with the operand 3050H immediately)

JMP address (jump to the operand address immediately)

Register Addressing Mode —

In register addressing mode, the data to be operated is available inside the register(s) and
register(s) is(are) operands. Therefore, the operation is performed within various registers of
the microprocessor.

Examples:

MOV A, B (move the contents of register B to register A)

ADD B (add contents of registers A and B and store the result in register A) INR A
(increment the contents of register A by one)

Direct Addressing Mode —

In direct addressing mode, the data to be operated is available inside a memory location and
that memory location is directly specified as an operand. The operand is directly available in
the instruction itself.

Examples:

LDA 2050 (load the contents of memory location into accumulator A)

LHLD address (load contents of 16-bit memory location into H-L register pair)

IN 35 (read the data from port whose address is 35)

Register Indirect Addressing Mode —

In register indirect addressing mode, the data to be operated is available inside a memory
location and that memory location is indirectly specified by a register pair.

Examples:

MOV A, M (move the contents of the memory location pointed by the H-L pair to the
accumulator)

LDAX B (move contents of B-C register to the accumulator)

LHLD 9570 (load immediate the H-L pair with the data of the location 9570)
Implied/Implicit Addressing Mode —

In implied/implicit addressing mode the operand is hidden and the data to be operated is
available in the instruction itself. Examples:

CMA (finds and stores the 1’s complement of the contents of accumulator A in A)
RRC (rotate accumulator A right by one bit)
RLC (rotate accumulator A left by one bit)

Instruction cycle of 8085 Microprocessor

Time required to execute and fetch an entire instruction is called instruction cycle. It consists:
Fetch cycle — The next instruction is fetched by the address stored in program counter (PC)
and then stored in the instruction register.

Decode instruction — Decoder interprets the encoded instruction from instruction register.
Execution cycle — consists memory read (MR), memory write (MW), input output read (IOR)
and input output write (IOW)

The time required by the microprocessor to complete an operation of accessing memory or
input/output devices is called machine cycle. One time period of frequency of microprocessor
is called t-state. A t-state is measured from the falling edge of one clock pulse to the falling
edge of the next clock pulse.

Fetch cycle takes four t-states and execution cycle takes three t-states.

Machine Cycle 1

Machine Cycle 2 —>

| : : .
t1 t2 ‘ t3 ‘ t4 ‘ = e e

S
o
i

F — Fetch Cycle Execution Cycle

Instruction Cycle

Instruction cycle in 8085 microprocessor

Timing diagram
Timing Diagram is a graphical representation. It represents the execution time taken by each
instruction in a graphical format. The execution time is represented in T-states.

Opcode fetch cycle

CLK

>

Opcode fetch

LP

LE

_/ |

L |

hesh |

>< High

order memory address

Low Ofd‘ef> . (Opcode) S N ——

/\

Memory address

\

—< Status

\
oM =0, S
N

L

Opcode fetch

Memory read cycle

memory.

Each instruction of the processor has one byte opcode.

The opcodes are stored in memory. So, the processor executes the opcode fetch
machine cycle to fetch the opcode from memory.

Hence, every instruction starts with opcode fetch machine cycle.

The time taken by the processor to execute the opcode fetch cycle is 4T.

In this time, the first, 3 T-states are used for fetching the opcode from memory and the
remaining T-states are used for internal operations by the processor.

The memory read machine cycle is executed by the processor to read a data byte from

The processor takes 3T states to execute this cycle.
The instructions which have more than one byte word size will use the machine cycle

after the opcode fetch machine cycle.

|<-— Memory read —->|

T, T2 LB
R D
Ass — Ag D(Memory address

ALE) \
A; —AD, >< A A) -(Data from memory)~

lO/l\—A.Sa.Sc—< IoM=0,8.=1,S,=0
M ; L]

Memory write cycle
* The memory write machine cycle is executed by the processor to write a data byte
in a memory location.
* The processor takes, 3T states to execute this machine cycle.

|<— Opcode write —D'
T, T3 T,
CLK | /
Ass —Ag >< Memory address

ALE } \

Ar—AD; [W A A X Datafrom cPU

|o/|\7|—< IOM=0.5.=0,S,=1

I/O read cycle
* The I/O Read cycle is executed by the processor to read a data byte from /O
port or from the peripheral, which is 1/0, mapped in the system.
* The processor takes 3T states to execute this machine cycle.
* The IN instruction uses this machine cycle during the execution.

|<— /O Read —Pl

T, T s

od Wl W
ae |/

A —Ag X /O Addr
A; — ADg VO Addd) (/0 Data)
RD ¥ j
IO/M.S,,S, X IOM=1.5,=1.5S,=0

I/O write cycle
* The I/O Read cycle is executed by the processor to write a data byte from
system to I/O port or peripheral, which is I/O mapped.
* The processor takes 3T states to execute this machine cycle.
* The OUT instruction uses this machine cycle during the execution.

SIGNAL % ;)
el N e Y
Al S'Aﬂ X PORT ADDRESS

AD,-AD, PORT ADDRESS)« ++ v+ < DATA | (D;Dy

ag -)/ \
e g

lOfM_,SLSo x Iolﬁ'l, S’ ={, so =

Example-1

The instruction MOV B, C is of 1 byte; therefore, the complete instruction will be stored in a
single memory address.

2000 MOV B,C

Only opcode fetching is required for this instruction and thus we need 4 T states for the timing
diagram. For the opcode fetch the 10/M (low active) =0, S1 =1 and SO = 1.

T1 T T3 T4

A1l5
>(20H higher order address| Xdecode

A8
G XOOH 41 H opcode w—
AO
ALE/ N\
1I0/M
S1,S0 \ 10/M=0, S1=S0=1 r
WR|/

In Opcode fetch (t1-t4 T-states):

1. 00 — lower bit of address where opcode is stored, i.e., 00 2.

20 — higher bit of address where opcode is stored, i.e., 20.

3. ALE - provides signal for multiplexed address and data bus. Only in t1 it used as address
bus to fetch lower bit of address otherwise it will be used as data bus.

4. RD (low active) — signal is 1 in t1 & t4 as no data is read by microprocessor. Signal is 0 in
t2 & t3 because here the data is read by microprocessor.

5. WR (low active) — signal is 1 throughout, no data is written by microprocessor.

6. I0/M (low active) —signal is 1 in throughout because the operation is performing on memory.

7. S0 and S1 — both are 1 in case of opcode fetching.

Example-2
MVI B, 45
2000: Opcode
2001: 45

* The opcode fetch will be same in all the instructions.

* Only the read instruction of the opcode needs to be added in the successive T states.

* For the opcode fetch the I0/M (low active) =0, S1 =1 and SO = 1. Also, 4 T states will
be required to fetch the opcode from memory.

* Forthe opcode read the IO/M (low active) =0, S1 =1 and SO = 0. Also, only 3 T states
will be required to read data from memory.

t1 t2 t3 t4 £5 te t7

2 / \ \ \ / \ /
/ / \ / \ / \. \ /

ADO ‘ Decoding ‘

AD7

02 OPCODE 01 OPCODE
ADS8

contents of 2D t contents of 2D
AD15 f

ALE

RD

WR
10/M

10//M=0 sd=s1=1 I 10//M=0 sd=0 S1=1
$1,S0 [

In Opcode fetch (t1-t4 T-states) —

1.
2.
3.

o 01

00 — lower bit of address where opcode is stored.

20 — higher bit of address where opcode is stored.

ALE — Provides signal for multiplexed address and data bus. Only in t1 it used as address
bus to fetch lower bit of address otherwise it will be used as data bus.

. RD (low active) — Signal is 1 in t1 & t4, no data is read by microprocessor. Signal is 0 in t2

& t3, data is read by microprocessor.

. WR (low active) — Signal is 1 throughout, no data is written by microprocessor.
. IO/M (low active) — Signal is 0 in throughout, operation is performing on memory.
. S0 and S1 - Signal is 1 in t1 to t4 states, as to fetch the opcode from the memory.

In Opcode read (t5-t7 T-states) —

1.
2.
3.

o N O O

01 — lower bit of address where data is stored.

320 — higher bit of address where data is stored.

ALE - Provides signal for multiplexed address and data bus. Only in t5 it used as address
bus to fetch lower bit of address otherwise it will be used as data bus.

. RD (low active) — Signal is 1 in t5 as no data is read by microprocessor. Signal is 0 in t6 &

t7 as data is read by microprocessor.

. WR (low active) — Signal is 1 throughout, no data is written by microprocessor.

. IO/M (low active) — Signal is 0 in throughout, operation is performing on memory.

. SO — Signal is 0 in throughout, operation is performing on memory to read data 45.
. S1 - Signal is 1 throughout, operation is performing on memory to read data 45.

Example-3
41FF STA 526AH

k Opcodefetch | Memory read g Memoryread , Memory write %,‘

i M
i Tn | le Tl!

VAVAVAS

l
ksi\" 1,

Rl

v L4 B

|
|

i
I | 7
|

|
| |
LB |

WR | — : L
T| N XL/
| I
o ! ~-
10/M.50.5{Y(TQLH 0,0,1] 0,0,1 0,1,0
i F 1 |

O STA means Store Accumulator -The contents of the accumulator is stored in the

specified address (526A).

* The opcode of the STA instruction is said to be 32H. It is fetched from the memory
41FFH

* Then the lower order memory address is read (6A). - Memory Read Machine Cycle

* Read the higher order memory address (52).- Memory Read Machine Cycle

* The combination of both the addresses are considered and the content from
accumulator is written in 526A. - Memory Write Machine Cycle

* Assume the memory address for the instruction and let the content of accumulator
is C7H. So, C7H from accumulator is now stored in 526A.

Example-4
4105 INRM
* Fetching the Opcode 34H from the memory 4105H. (OF cycle)
* Letthe memory address (M) be 4250H. (MR cycle -To read Memory address and data)
Oet the content of that memory is 12H.
* Increment the memory content from 12H to 13H. (MW machine cycle)

‘s Opcode fetch . Memoryread , Memory write
T T, 5 ¥ T 7 8 T 2 5 5 5 T

6 x < 10

e WaVaVaVaVaVaVWaVaVaVa

AD“-AD: OSH_)"C'““ - = K 59,, [y« 2,) L so, 13,

AS'AI;—‘X 43,)' - '{(42, X 42,,

0 .l 7 _| /

]
[
>

— —
xozu.so.s!ﬂx 0,1.1 0.0, 1 X 0.1,0

Counter and time delay
When the delay subroutine is executed, the microprocessor does not execute other tasks. For
the delay we are using the instruction execution times. executing some instructions in a loop,
the delay is generated. There are some methods of generating delays. These methods are as
follows.

* Using NOP instructions

» Using 8-bit register as counter

* Using 16-bit register pair as counter. Using NOT instructions:

* One of the main usage of NOP instruction is in delay generation.

* The NOP instruction is taking four clock pulses to be fetching, decoding and executing.

* Inthe 8085 MPU the internal clock frequency is 3MHz.

+ So, from that we can easily determine that each clock period is 1/3 of a microsecond.

* So, the NOP will be executed in 1/3 * 4 = 1.333ps. Using 8-bit register as counter:

» Counter is another approach to generate a time delay.

* Inthis case the program size is smaller.

* So, in this approach we can generate more time delay in less space.

* The following program will demonstrate the time delay using 8-bit counter. MVI B,FFH

LOOP: DCR B
JNZ LOOP
RET

* Here the first instruction will be executed once, it will take 7 T-states.
* DCR C instruction takes 4 T-states.
» This will be executed 255 (FF) times.
* The JNZ instruction takes 10 T-states when it jumps (It jumps 254 times), otherwise it
will take 7 T-States.
* And the RET instruction takes 10 T-States.
7 + ((4*255) + (10*254)) + 7 + 10 = 3584.
* So, the time delay will be 3584 * 1/3us = 1194.66s.

* So, when we need some small delay, then we can use this technique with some other

values in the place of FF.
This technique can also be done using some nested loops to get larger delays. The following

code is showing how we can get some delay with one loop into some other loops. MVI
B,FFH

L1: MVI C,FFH
L2: DCR C
JINZ L2
DCR B
JNZ L1

RET
From this block, if we calculate the delay, it will be nearly 305us delay. It extends the time of
delay.

Using 16-bit register-pair as counter:
* Instead of using 8-bit counter, we can do that kind of task using 16-bit register pair.
* Using this method more time delay can be generated.
» This method can be used to get more than 0.5 seconds delay.

Program Time (T-States)
LXI B,FFFFH 10
LOOP: DCX B 6
MOV A,B 4
ORAC 4
JNZ LOOP 10 (For Jump), 7(Skip)
RET 10

From that table, if we calculate the time delay:

10+ (6 +4+4+10)*65535H - 3 + 10 =17 + 24 * 65535H = 1572857.
So, the time delay will be 1572857 * 1/3us = 0.52428s. Here we are getting nearly 0.5s
delay.

Assembly language program
Example-1

Write an assembly language program to add two 8-bit numbers 45H and 32H in 8085
Microprocessor and store the result in 2050H. The starting address of the program is
taken as 2000.

Program address | Mnemonics Operands comments

2000 MVI A,45 Load 1% data 45H in ACC
2002 MVI B,32 Load 2" data 32H in B
2004 ADD B A+B=A

2005 STA 2050 Store the result in 2050H
2008 HLT Stop the program

O/P address Result

2050H 77H

Example-2

Write an ALP to add 2 8-bit numbers stored in memory location 2050H and 2051H. Result
can be 8/16 bit and store it in 2052H and 2053H.

Label Mnemonics | Operands Comments

Program

address

2000 MVI C,00 Initialize the carry

2002 LXI H,2050 Get the 1 data

2005 MOV AM Load 1% data in ACC

2006 INX H Get 2" data

2007 ADD M Add both data

2008 JNC LOOP If no carry, jump to LOOP

200B INR C
If carry, increment register
C

200C LOOP STA 2052 Store the sum in 2052

2010 MOV A,C Move carry to ACC
2011 STA 2053 Store carry in 5053
2014 HLT Stop the program
Without carry With carry
I/P address Data I/P address Data
2050 53 2050 D9
2051 27 2051 62
O/P address Result O/P address Result
2052 TA 2053 3B
2053 00 2053 01

Basic Interfacing concept
Interface is the path for communication between two components. Interfacing is of two types,
memory interfacing and 1/O interfacing. Memory interfacing

Memory interfacing is used to provide more memory space to accommodate complex
programs for more complicated systems.

Types of memories which are most commonly used to interface with 8085 are RAM,
ROM, and EEPROM.

8085 can access 64kB of external memory.

It can be explained as- total number of address lines in 8085 are 16, therefore it can
access 2”16 = 65535 locations i.e., 64kB

I/O interfacing

There are various communication devices like the keyboard, mouse, printer, etc.

So, we need to interface the keyboard and other devices with the microprocessor by
using latches and buffers.

This type of interfacing is known as 1/O interfacing. Block diagram of memory and
I/0O interfacing

Address Bus

< Data Bus >
< Control Bus >

Microprocessor

VN N7 N7
Memory 1/O Device

Memory mapped I/O and I/O mapped I/O In Memory
Mapped Input Output -

We allocate a memory address to an Input-Output device.

Any instructions related to memory can be accessed by this Input-Output device. U
The Input-Output device data are also given to the Arithmetic Logical Unit.

Input-Output Mapped Input Output -

We give an Input-Output address to an Input-Output device
Only IN and OUT instructions are accessed by such devices.
The ALU operations are not directly applicable to such Input-Output data. So as a
summary we can mention that -
I/O is any general-purpose port used by processor/controller to handle peripherals
connected to it.
I/0 mapped I/Os have a separate address space from the memory. So, total addressed
capacity is the number of I/Os connected and a memory connected. Separate
I/Orelated instructions are used to access I/Os. A separate signal is used for
addressing an 1/O device.
Memory-mapped I/Os share the memory space with external memory. So, total
addressed capacity is memory connected only. This is underutilisation of resources if
your processor supports I/O-mapped I/O. In this case, instructions used to access I/Os
are the same as that used for memory.
Let's take an example of the 8085 processor. It has 16 address lines i.e., addressing
capacity of 64 KB memory. It supports I/O-mapped I/Os. It can address up to 256 1/Os.
If we connect I/Os to it an I/O-mapped I/O then, it can address 256 1/Os + 64 KB
memory. And special instructions IN and OUT are used to access the peripherals. Here
we fully utilize the addressing capacity of the processor.
If the peripherals are connected in memory mapped fashion, then total devices it can
address is only 64K. This is underutilisation of the resource. And only
memaoryaccessing instructions like MVI, MOV, LOAD, SAVE are used to access the
I/O devices.

UNIT-5 Interfacing and support chips

8255 Programable Peripheral Interface (PPI)

+ PPI 8255 is a general purpose programmable 1/0 device designed to interface the CPU
with its outside world such as ADC, DAC, keyboard etc.

* We can program it according to the given condition. It can be used with almost any
microprocessor.

» It consists of three 8-bit bidirectional 1/0 ports (24 1/O lines) which can be configured
as per the requirement.

Ports of 8255A
8255A has three ports, i.e., PORT A, PORT B, and PORT C.

* Port A (PAO-PA7) contains one 8-bit output latch/buffer and one 8-bit input buffer.

* Port B (PB0O-PB7) is similar to PORT A.

* Port C can be split into two parts, i.e., PORT C lower (PC0-PC3) and PORT C upper

(PC7-PC4) by the control word.

These three ports are further divided into two groups, i.e., Group A includes PORT A and upper
PORT C. Group B includes PORT B and lower PORT C. These two groups can be
programmed in three different modes, i.e., the first mode is named as mode 0, the second
mode is named as Mode 1 and the third mode is named as Mode 2.

Features of 8255A

The prominent features of 8255A are as follows — 0 It consists of
3 8-hit I/0 ports i.e., PA, PB, and PC.
» Address/data bus must be externally demultiplexed.
* Itis TTL compatible.
* It has improved DC driving capability.

8255 Architecture

:

e +5V — GROUP A Vo
sul:gngg { 'k:> PORT A PAT-PAO

———» GND GROUP A 8
] covmrow K "

—

GROUP A
PORT C
UPPER

Vo

BI-DIRECTIONAL PC7-PC4

DATA BUS (4)
DATABUSA N
D7-D0 BUFFER)
N 8-BITY Vo
INTERNAL
DATA BUS FO3-PCY
e e
RD e READ ‘ —ee
WR septd WRITE GROUP B ('—
Al CONTROL R | CONTROL I\ GROUP B Vo
LOGIC PORT B PB7-PBO
Al i S (8)
RESET i 4
*

P |

Control group A
Control group A consist of port A and port C upper.
Control group B
Control group B consists of port C lower and port B.
Data Bus Buffer
* It is a tri-state 8-bit buffer, which is used to interface the microprocessor to the
system data bus.
» Data is transmitted or received by the buffer as per the instructions by the CPU.
» Control words and status information is also transferred using this bus.
Read/Write Control Logic
* This block is responsible for controlling the internal/external transfer of
data/control/status word.
* It accepts the input from the CPU address and control buses, and in turn issues
command to both the control groups.

+ Depending upon the value if CS’, A1 and A0 we can select different ports in
different modes as input-output function or BSR.
» This is done by writing a suitable word in control register (control word DO-D7).

Cs Al A0 Selection
0 0 0 PORT A
0 0 1 PORT B
0 1 0 PORT C
0 1 1 Control Register

‘ 1 ‘ X X No Selection

Pin diagram

[

J
Y 0O

$48448288888001008081
T I Il d

ol IR o I

YN W

T T 0] 1
B - -

)

T

1)
n O
S I) T I Y

S
wH

[

2 P

s255

R\ R

[l ol el el
)
P

Vs WN =

|
o b
[y

NRkOW

1* B w v B v Mt v By w R @ B w M o SO

W m W

S0 0y

N

CS

It stands for Chip Select. A LOW on this input selects the chip and enables the communication
between the 8255A and the CPU. It is connected to the decoded address, and A0 & Al are
connected to the microprocessor address lines.

WR

It stands for write. This control signal enables the write operation. When this signal goes low,
the microprocessor writes into a selected 1/O port or control register.

RESET

This is an active high signal. It clears the control register and sets all ports in the input mode
RD

It stands for Read. This control signal enables the Read operation. When the signal is low, the
microprocessor reads the data from the selected 1/O port of the 8255.

AO and Al

These input signals work with RD, WR, and one of the control signals. Following is the table
showing their various signals with their result.

As Ao RD WR CS Result
Input

0 0 0 1 0 OperationPORT A
— Data Bus

0 1 0 1 0 PORT B — Data Bus

1 0 0 1 0 PORT C — Data Bus

Output Operation

Data Bus — PORT A

0 1 1 0 0 Data Bus — PORT A
1 0 1 0 0 Data Bus — PORT B

Operating Modes
1. BSR (bit set-reset) mode-

If MSB of control word (D7) is 0, PPI works in BSR mode. In this mode only port C bits are
used for set or reset.

Dy Dg Cs Dy Dy Dy Dy Do
o e X THE XS S b JFE b oSt b M SR
l i i]'—> Port C bit Set/ Reset
BSR mode Don't care Port C bit select 1 = Set
b b b 0 = Reset
L AR5 0 Bt <] Bit O
c 0 1 Bit 1
O 1 O Bit 2
-1 1 Bit3
1. 0.0 Bit 4
1 c 1 BitS
T 0. .0 Bit 6
1 1 1 Bit 7
BSR control word format

2.1/0 mode-

Mode 0 - In this mode, Port A and B is used as two 8-bit ports and Port C as two 4-bit ports.
Each port can be programmed in either input mode or output mode where outputs are latched
and inputs are not latched. Ports do not have interrupt capability.

Mode 1 - In this mode, Port A and B is used as 8-bit I/O ports. They can be configured as
either input or output ports. Each port uses three lines from port C as handshake signals.
Inputs and outputs are latched.

Mode 2 - In this mode, Port A can be configured as the bidirectional port and Port B either in
Mode 0 or Mode 1. Port A uses five signals from Port C as handshake signals for data transfer.
The remaining three signals from Port C can be used either as simple 1/O or as handshake for
port B.

D7=1| D6 D5 D3 D2 D1 DO
T T
PA mode selection I/O function of PB 1/O function of PCL
00: mO I/O func of PCU 0:1/0 0:0/P
01:m1 /0 function of PA 0:0/P 1:0/p 1:1/P
1X : m2 0:0/P 1:1/P
1:1/P
PB mode selection
0:m0
1:mil

Seven segment LED display

A seven-segment LED is a kind of LED (Light Emitting Diode) consisting of 7 small LEDs it
usually comes with the microprocessor's as we commonly need to interface them with
microprocessors like 8085.

Structure of Seven Segments LED:

d

* It can be used to represent numbers from 0 to 8 with a decimal point.
* We have eight segments in a Seven Segment LED display consisting of 7 segments
which include ‘..

* The seven segments are denoted as “a, b, ¢, d, e, f, g, h” respectively, and ‘.’ is
represented by “h”.
Interfacing Seven Segment Display with 8085:
We will see a program to Interfacing Seven Segment Display with 8085 using 8255. Note
logic needed for activation —
Common Anode — 0 will make an LED glow.
Common Cathode — 1 will make an LED glow.
Common Anode Method:
Here we are using a common anode display therefore 0 logic is needed to activate the
segment. Suppose to display number 9 at the seven-segment display, therefore the segments
F, G, B, A, C, and D have to be activated.
The instructions to execute it is given as,

MVI A,99 ouT
00
» First, we are storing the 99H in the accumulator i.e., 10010000 by using MVI
instruction.

* By OUT instruction we are sending the data stored in the accumulator to the port O0H.
Common Cathode Method:
Here we are using common cathode 1 logic is needed to activate the signal. Suppose to display
number 9 at the seven-segment display, therefore the segments F, G, B, A, C, and D have to
be activated.
The instructions to execute it is given as,

MVI A,6F ouT
00
» First, we are storing the 6FH in the accumulator i.e., 01101111 by using MVI
instruction.

* By OUT instruction we are sending the data stored in the accumulator to the port OOH.

Traffic light controller

The traffic lights are interfaced to Microprocessor system through buffer and ports of
programmable peripheral Interface 8255. So the traffic lights can be automatically switched
ON/OFF in desired sequence. The Interface board has been designed to work with parallel
port of Microprocessor system.

Working Program

Design of a microprocessor system to control traffic lights. The traffic should be controlled in
the following manner.

1) Allow traffic from W to E and E to W transition for 20 seconds.

2) Give transition period of 5 seconds (Yellow bulbs ON)

3) Allow traffic from N to 5 and 5 to N for 20 seconds

4) Give transition period of 5 seconds (Yellow bulbs ON) 5) Repeat the process.

Source Program:
MVI A, 80H: Initialize 8255, port A and port B
OUT 83H (CR): in output mode

START: MVI A, 09H
OUT 80H (PA): Send data on PA to glow R1 and R2

MVI A, 24H
OUT 81H (PB): Send data on PB to glow G3 and G4
MVI C, 28H: Load multiplier count (4010) for delay
CALL DELAY: Call delay subroutine
MVI A, 12H
OUT (81H) PA: Send data on Port A to glow Y1 and Y2
OUT (81H) PB: Send data on port B to glow Y3 and Y4
MVI C, OAH: Load multiplier count (1010) for delay
CALL: DELAY: Call delay subroutine
MVI A, 24H
OUT (80H) PA: MVI Send data on port A to glow G1 and G2 A,
09H
OUT (81H) PB: Send data on port B to glow R3 and R4
MVI C, 28H: Load multiplier count (4010) for delay
CALL DELAY: MVI Call delay subroutine
A, 12H
OUT PA: Send data on port A to glow Y1 and Y2
OUT PB: Send data on port B to glow Y3 and Y4
MVI C, OAH: Load multiplier count (1010) for delay
CALL DELAY: Call delay subroutine
JMP START
Delay Subroutine:
DELAY: LXI D, Count: Load count to give 0.5 sec delay
BACK: DCX D: MOV A, D Decrement counter
ORAE: Check whether count is 0
JNZ BACK: If not zero, repeat
DCR C: Check if multiplier zero, otherwise repeat JNZ
DELAY
RET: Return to main program

Square wave generator
* With O0H as i/p to DAC, analog o/p is -5V, and with FFH as i/p, analog o/p is +5V.

« 1/P 00H and FFH at regular intervals generate square wave. U The
frequency can be varied by varying the time delay.

Algorithm
Initialize the control word of 8255 to operate in I/O mode for port A and B & C to operate in o/p
mode.

Program

MVI A,80

OUT CWR initialize the control word
LOOP: MVI A,00

OUT PA
CALL DELAY
MVI AFF
OUT PA
CALL DELAY
JMP LOOP
DELAY: MVI C,85
BACK: DCR C
JNZ BACK
RET

