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CHAPTER 1 

Magnetic Circuits 

 

Introduction : 

Magnetic flux lines always form closed loops. The closed path followed by the 

flux lines is called a magnetic circuit. Thus, a magnetic circuit provides a path for 

magnetic flux, just as an electric circuit provides a path for the flow of electric 

current. In general, the term magnetic circuit applies to any closed path in space, 

but in the analysis of electro-mechanical and electronic system this term is 

specifically used for circuits containing a major portion of ferromagnetic 

materials. The study of magnetic circuit concepts is essential in the design, 

analysis and application of electromagnetic devices like transformers, rotating 

machines, electromagnetic relays etc. 

Magnetomotive Force (M.M.F) : 

Flux is produced round any current – carrying coil. In order to produce the required 

flux density, the coil should have the correct number of turns. The product of the 

current and the number of turns is defined as the coil magneto motive force (m.m.f). 

If I = Current through the coil (A) 

N = Number of turns in the coil. 

Magnetomotive force = Current x turns 

So M.M.F = I X N 

The unit of M.M.F. is ampere–turn (AT) but it is taken as Ampere(A) since N 

has no dimensions. 

Magnetic Field Intensity: 

Magnetic Field Intensity is defined as the magneto-motive force per unit length of the 
magnetic flux path. Its symbol is H. 



 

 
Where l is the mean length of the magnetic circuit in meters. Magnetic field intensity is also 

called magnetic field strength or magnetizing force. 

 

 
Permeability :- 

Every substance possesses a certain power of conducting magnetic lines of force. For 

example, iron is better conductor for magnetic lines of force than air (vaccum) . Permeability 

of a material (μ) is its conducting power for magnetic lines of force. It is the ratio of the flux 

density. (B) Produced in a material to the magnetic filed strength (H). 
 

Reluctance : 

Reluctance (s) is akin to resistance (which limits the electric Current). 

Flux in a magnetic circuit is limited by reluctance. Thus reluctance(s) is a measure of the 

opposition offered by a magnetic circuit to the setting up of the flux. 

Reluctance is the ratio of magneto motive force to the flux. Thus 
 

 

Its unit is ampere turns per webber (or AT/wb). 

Permeance:- 

The reciprocal of reluctance is called the permeance (symbol A). 

Permeance (A) = 1/S wb/AT 



Turn T has no unit. 

Hence permeance is expressed in wb/A or Henerys(H). 

 
B.H. Curve : 

Place a piece of an unmagnetised iron bar AB within the field of a solenoid 

to magnetise it. The field H produced by the solenoid, is called magnetising field, 

whose value can be altered (increased or decreased) by changing (increasing or 

decreasing) the current through the solenoid. If we increase slowly the value of 

magnetic field (H) from zero to maximum value, the value of flux density (B) 

varies along 1 to 2 as shown in the figure and the magnetic materials (i.e iron 

bar) finally attains the maximum value of flux density (Bm) at point 2 and thus 

becomes magnetically saturated. 

 

Fig. 2.1 

Now if value of H is decreased slowly (by decreasing the current in the 

solenoid) the corresponding value of flux density (B) does not decreases along 2-1 

but decreases some what less rapidly along 2 to 3. Consequently during the 

reversal of magnetization, the value of B is not zero, but is '13' at H= 0. In other 

wards, during the period of removal of magnetization force (H), the iron bar is not 

completely demagnetized. 

 
In order to demagnetise the iron bar completely, we have to supply the 

demagnetisastion force (H) in the opposite direction (i.e. by reserving the 

direction of current in the solenoid). The value of B is reduced to zero at point 4, 



when H='14'. This value of H required to clear off the residual magnetisation, is 

known as coercive force i.e. the tenacity with which the material holds to its 

magnetism. 

 
If after obtaining zero value of magnetism, the value of H is made more 

negative, the iron bar again reaches, finally a state of magnetic saturation at the 

point 5, which represents negative saturation. Now if the value of H is increased 

from negative saturation (= '45') to positive saturation ( = '12') a curve '5,6,7,2' 

is obtained. The closed loop "2,3,4,5,6,7,2" thus represents one complete cycle 

of magnetisation and is known as hysteresis loop. 



CHAPTER 02 

COUPLED CIRCUITS 

It is defined as the interconnected loops of an electric network through the 

magnetic circuit. 

There are two types of induced emf. 

(1) Statically Induced emf. 

(2) Dynamically Induced emf. 

Faraday’s Laws of Electro-Magnetic : 

Introduction → First Law :→ 

Whenever the magnetic flux linked with a circuit changes, an emf is induced in it. 

OR 

Whenever a conductor cuts magnetic flux an emf is induced in it. 

Second Law :→ 

It states that the magnitude of induced emf is equal to the rate of change of flux 

linkages. 

OR 

The emf induced is directly proportional to the rate of change of flux and 

number of turns 

Mathematically : 

d  

e  
dt 

e ∝ N 

 

Or 

Where e = induced emf 

N = No. of turns 

φ = flux 

‘- ve’ sign is due to Lenz’s Law 



Inductance :→ 

It is defined as the property of the substance which opposes any change in Current & flux. 

Unit :→ Henry 

 

 

Fleming’s Right Hand Rule:→ 

It states that “hold your right hand with fore-finger, middle finger and thumb at right angles 
to each other. If the fore-finger represents the direction of field, thumb represents the 
direction of motion of the conductor, then the middle finger represents the direction of 
induced emf.” 

 
Lenz’s Law : → 

It states that electromagnetically induced current always flows in such a 

direction that the action of magnetic field set up by it tends to oppose the vary 

cause which produces it. 

OR 

It states that the direction of the induced current (emf) is such that it opposes the 

change of magnetic flux. 

 
(2) Dynamically Induced emf :→ 
 

 

 
In this case the field is stationary and the conductors are rotating in an uniform magnetic 

field at flux density ‘B” Wb/mt2 and the conductor is lying perpendicular to the magnetic 

field. Let ‘l’ is the length of the conductor and it moves a distance of ‘dx’ nt in time ‘dt’ 

second. 

The area swept by the conductor = l. dx 

Hence the flux cut = ldx. B 

Change in flux in time ‘dt’ second = 



 

E = Blv 

If the conductor is making an angle ‘θ’ with the magnetic field, then 

e = Blv sinθ 



(1) Statically Induced emf :→ 

Here the conductors are remain in stationary and flux linked with it changes 

by increasing or decreasing. 

It is divided into two types . 

(i) Self-induced emf. 

(ii) Mutually-induced emf. 

(i) Self-induced emf : → It is defined as the emf induced in a coil due to the 

change of its own flux linked with the coil. 

 

If current through the coil is changed then the flux linked with its own turn 

will also change which will produce an emf is called self-induced emf. 

Self-Inductance :→ 

It is defined as the property of the coil due to which it opposes any change 

(increase or decrease) of current or flux through it. 

Co-efficient of Self-Inductance (L) :→ 

It is defined as the ratio of weber turns per ampere of current in the coil. 

OR 

It is the ratio of flux linked per ampere of current in the coil. 

 
1st Method for ‘L’ :→ 

Where L = Co-efficient of self-induction 

N = Number of turns 

φ = flux I = 

Current 

2nd 

Method 



for L :→ 

We know 

that 

 

⇒ LI = Nφ 

⇒ −LI = −Nφ 

Where L = Inductance 
 

e = 1 volt L 

= 1 Henry 

A coil is said to be a self-inductance of 1 Henry if 1 volt is induced in it. 

When the current through it changes at the rate of 1 amp/ sec. 

3rd Method for L :→ 

Where A = Area of x-section of the coil 

N = Number of turns 

L = Length of the coil 



(ii) Mutually Induced emf :→ 

It is defined as the emf induced in one coil due to change in current in other 
coil. Consider two coils ‘A’ and ‘B’ lying close to each other. An emf will be 
induced in coil ‘B’ due to change of current in coil ‘A’ by changing the position 
of the rheostat. 

 

Mutual Inductance :→ 

It is defined as the emf induced in coil ‘B’ due to change of current in coil ‘A’ 

is the ratio of flux linkage in coil ‘B’ to 1 amp. Of current in coil ‘A’. 

Co-efficient of Mutual Inductance (M): 

Coefficient of mutual inductance between the two coils is defined as the 

weber-turns in one coil due to one ampere current in the other. 

1st Method for ‘M’ :→ 

N2 = Number of turns 

M = Mutual 

Inductance φ1 = flux 

linkage I1 = Current in 

ampere 

2nd Method for M :→ 

We know that 



⇒ MI2 = N2 φ1 ⇒−MI1 = N2 φ1 

 

 

 

Where 

eM = −1 VOLT 

Then M = 1 Henry 

A coil is said to be a mutual inductance of 1 Henry when 1 volt is induced 

when the current of 1 amp/sec. is changed in its neighbouring coil. 

 
3rd Method for M :→ 

Co-efficient of Coupling : 

Consider two magnetically coupled coils having N1 and N2 turns respectively. 

Their individual co-efficient of self-inductances are 

 

The flux φ1 produced in coil ‘A’ due to a current of I1 ampere is 

Suppose a fraction of this flux i.e. K1φ1 is linked with coil ‘B’ 



 

Similarly the flux φ2 produced in coil ‘B’ due to I2 amp. Is 

Suppose a fraction of this flux i.e. K2φ2 is linked with coil ‘A’ 

Multiplying equation (1) & (2) 

 

 

Where ‘K’ is known as the co-efficient of coupling. 

Co-efficient of coupling is defined as the ratio of mutual inductance 

between two coils to the square root of their self- inductances. 

 
Inductances In Series (Additive) :→ 

Let M = Co-efficient of mutual inductance L1 = 

Co-efficient of self-inductance of first coil. 

L2 = Co-efficient of self-inductance of second coil. 

EMF induced in first coil due to self-inductance 



 

Mutually induced emf in first coil 

 

EMF induced in second coil due to self induction 

 

Mutually induced emf in second coil 

Total induced emf 

E=eL1+eL2+em1+em2 

 

If ‘L’ is the equivalent inductance, then 
 

 

Inductances In Series (Substnactive) :→ 

Let M = Co-efficient of mutual inductance 

L1 = Co-efficient of self-inductance of first coil 

L2 -= Co-efficient of self-inductance of second coil 

Emf induced in first coil due to self induction 



 

Mutually induced emf in first coil 

Emf induced in second coil due to self-induction 

 

Mutually induced emf in second coil 

Total induced emf 

e = eL1 + e L2 + eM1 + eM2 

Then 
 

 

 

Inductances In Parallel :→ 

Let two inductances of L1 & L2 are connected in parallel Let 

the co-efficent of mutual inductance between them is M. 

I-i1+i2 



 

If ‘L’ is the equivalent inductance 

Equating equation (3) & (5) 



 

When mutual field assist. 

When mutual field opposes. 

 

 

 

 

Exp. -01 : 

Two coupled cols have self inductances L1= 10×10-3H and L2= 20×10-3H. 

The coefficient of coupling (K) being 0.75 in the air, find voltage in the 

second coil and the flux of first coil provided the second coils has 500 

turns and the circuit current is given by i1 = 2sin 314.1A. Solution : 
M=K√𝐿1𝐿2 

M = 0.75 √10×10−3 × 20×10−3 

⇒M =10.6×10−3H 

The voltage induced in second coil is 

V  

=10.6×10-3 × 2×314 cos 314dt. 



The magnetic circuit being linear, 

Exp. 02 

Find the total inductance of the three series connected coupled coils.Where 

the self and mutual inductances are 

L1 = 1H, L2 = 2H, L3 = 5H M12= 

0.5H, M23 = 1H, M13 = 1H 

Solution: LA = L1 + M12 + M13 

= 1 + 20.5 +1 

= 2.5H 

LB = L2 + M23 + M12 

= 2 + 1 + 0.5 

= 3.5H 

LC = L3 + M23 + M13 

= 5 + 1 + 1 

= 7H 

Total inductances are 

Lea = LA + LB + Lc 

= 2.5 + 3.5 + 7 

= 13H (Ans) 



CHAPTER 3 

Circuit Elements and analysis 

 

1.1 Voltage 

 

Energy is required for the movement of charge from one point to another. Let W Joules 

of energy be required to move positive charge Q columbs from a point a to point b in a 

circuit. We say that a voltage exists between the two points. The voltage V between 

two points may be defined in terms of energy that would be required if a charge were 

transferred from one point to the other. Thus, there can be a voltage between two points 

even if no charge is actually moving from one to the other. Voltage between a and b is 

given by 

 

W 

V =  J / C 

Q 

 

 

 

Worked are (W) in Joules 

Hence Electric Potential (V) =   

Ch arge (Q)in columbs 

 
Current : 

 

An electric current is the movement of electric charges along a definite path. In case of 

a conductor the moving charges are electrons. 

 

The unit of current is the ampere. The ampere is defined as that current which when 

flowing in two infinitely long parallel conductors of negligible cross section, situated 1 meter 

apart in Vacuum, produces between the conductors a force of 2 x 10-7 Newton per metre length. 

 

Power : Power is defined as the work done per unit time. If a field F newton acts for t seconds 

through a distance d metres along a straight line, work done W = Fxd N.m. or J. 

The power P, either generated or dissipated by the circuit element. 



w F x d 

P =  

t t 



Work 
Power can also be written as Power =   

time 

 

Work Charge 

= x = Voltage x Current Charge Time 

 

P = V x I watt. 

 

Energy : Electric energy W is defined as the Power Consumed in a given time. Hence, if 

current IA flows in an element over a time period t second, when a voltage V volts is applied 

across it, the energy consumed is given by 

W = P x t = V x I x t J or watt. second. 

 

The unit of energy W is Joule (J) or watt. second. However, in practice, the unit of energy 

is kilowatt. hour (Kwh) 

1.2 Resistance : According to Ohm's law potential difference (V) across the ends of a 

conductor is proportional to the current (I) flowing through the conductor at a constant 

temperature. Mathematically Ohm's law is expressed as 

 

Vα I or V = R x I 

 

V 

Or R =  where R is the proportionality constant and is designated as the conductor 

I 

resistance and has the unit of Ohm (Ω). 

 

Conductance : Voltage is induced in a stationary conductor when placed in a varying 

magnetic field. The induced voltage (e) is proportional to the time rate of change of 

current, di/dt producing the magnetic field. 

di 

Therefore e α   

dt 

 

di 

Or e = L   



dt 

 

 

 

 
e and i are both function of time. The proportionality constant L is called inductance. The 

Unit of inductance is Henery (H). 

Capacitance  : A capacitor is a Physical device, which when polarized by an electric field by 

applying a suitable voltage across it, stores energy in the form of a charge separation. 

The ability of the capacitor to store charge is measured in terms of capacitance. 

Capacitence of a capacitor is defined as the charge stored per Volt applied. 

 

q Coulomb 

C = = = Farad v Volt 

 
1.3 Active and passive Branch : 

 

A branch is said to be active when it contains one or more energy sources. A passive 

branch does not contain an energy source. 

Branch : A branch is an element of the network having only two terminals. 

 

Bilateral and unilateral element : 

 

A bilateral element conducts equally well in either direction. Resistors and inductors 

are examples of bilateral elements. When the current voltage relations are different for 

the two directions of current flow, the element is said to be unilateral. Diode is an 

unilateral element. 

Linear Elements : When the current and voltage relationship in an element can be 

simulated by a linear equation either algebraic, differential or integral type, the element 

is said to be linear element. 

Non Linear Elements : When the current and voltage relationship in an element can 

not be simulated by a linear equation, the element is said to be non linear elements. 



1.4 Kirchhoff's Voltage Law (KVL) : 

 

The algebraic sum of Voltages (or voltage drops) in any closed path or loop is Zero. 

Application of KVL with series connected voltage source. 

 
 

 

Fig. 1.1 

 

V1 + V2 – IR1 – IR2 = 0 

 

= V1 + V2 = I (R1 + R2) 

 

V1 + V2 

I =   

R1 + R2 

 
Application of KVL while voltage sources are connected in opposite polarity. 

 

Fig. 1.2 

V1 – IR1 – V2 – IR2 – IR3 = 0 

 V1 – V2 = IR1 + IR2 + IR3 



 V1 – V2 = I (R1 + IR2 + IR3) 

V1 − V2 

 I =   

R1 + R2 + R3 

 
Kirchaoff's Current Law (KCL) : 

 

The algebraic sum of currents meeting at a junction or mode is zero. 
 

Fig. 1.3 

Considering five conductors, carrying currents I1, I2, I3, I4 and I5 meeting at a point O. 

Assuming the incoming currents to be positive and outgoing currents negative. 

I1 + (-I2) + I3 + (-I4) + I5 = 0 

I1 – I2 + I3 – I4 + I5 = 0 

I1 + I3 + I5 = I2 + I4 

Thus above Law can also be stated as the sum of currents flowing towards any junction 

in an electric circuit is equal to the sum of the currents flowing away from that junction. 

Voltage Division (Series Circuit) 

 

Considering a voltage source (E) with resistors R1 and R2 in series across it. 

 

 

Fig. 1.4 



E 

I =   

R1 + R2 

 

E.R1 

Voltage drop across R1 = I. R1 = 

R1 + R2 

 

E.R1 

Similarly voltage drop across R2 = I.R2 = 

R1 + R2 

 

 

 

 

Current Division : 

 

A parallel circuit acts as a current divider as the current divides in all branches in a 

parallel circuit. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.5 

 

Fig. shown the current I has been divided into I1 and I2 in two parallel branches with resistances 

R1 and R2 while V is the voltage drop across R1 and R2. 

 

V V 

I1 =   and I2 =   

R1 R2 

 

 

Let R = Total resistance of the circuit. 

 

1 1 1 

Hence = = + 



R R1 R2 

 

R1R2 

 R =   

R1 + R2 

V 
I = = 

V V(R1 +R2) 
 R R  

= 

R 1 2 R1R 2 

R1 +R2 

 
But = V = I1R1 = I2R2 

 

 

⎛  R1R2 ⎞⎟⎟ 

 I = I1R1 ⎜⎜⎝ R1 +R2 ⎠ 

 

 
 I = 

I1(R1 + R2) 

R2 

 

Therefore 

 

 

Similarly it can be derived that 

IR 

I1 =  2 

R1 + R2 

IR 
I2 = 1 

R1 + R2 



 

 

 

 

 

 

 

 

 

NETWORK ANALYSIS 

Different terms are defined below: 

1. Circuit: A circuit is a closed conducting path through which an electric current either . 

flow or is intended flow 

2. Network: A combination of various electric elements, connected in any manner. 

Whatsoever, is called an electric network 

3. Node: it is an equipotential point at which two or more circuit elements are joined. 

4. Junction: it is that point of a network where three or more circuit elements are joined. 

5. Branch: it is a part of a network which lies between junction points. 

6. Loop: It is a closed path in a circuit in which no element or node is accounted more than 

once. 

7. Mesh: It is a loop that contains no other loop within it. 

Example 3.1 In this circuit configuration of figure 3.1, obtain the no. of i) circuit elements ii) 

nodes iii) junction points iv) branches and v) meshes. 
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R3 R9 V2 

 

 

 

 

 

 

 

a Solution: 

 

 

 

 

 

 

i) no. of 

 

 

 

 

 

 

circuit 



elements = 
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ii) no. of 
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(a, b, c, d, e, 
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iii) no. of 

 

 

 

 

 

 

junction 

 

 

 

 

 

 

points =3 (b, 

 

 

 

 

 

 

e, h) iv) no. 

 

 

 

 

 

 

of branches 



= 5 (bcde, 

 

 

 

 

 

 

be, bh, 

 

 

 

 

 

 

befgh, bakh) 

 

 

 

 

 

 

v) no. of meshes = 3 (abhk, bcde, befh) 

3.2 MESH ANALYSIS 

Mesh and nodal analysis are two basic important techniques used in finding solutions 

for a network. The suitability of either mesh or nodal analysis to a particular problem depends 

mainly on the number of voltage sources or current sources .If a network has a large number of 

voltage sources, it is useful to use mesh analysis; as this analysis requires that all the sources in 

a circuit be voltage sources. Therefore, if there are any current sources in a circuit they are to 

be converted into equivalent voltage sources,if, on the other hand, the network has more current 

sources,nodal analysis is more useful. 

Mesh analysis is applicable only for planar networks. For non-planar circuits mesh analysis 

is not applicable .A circuit is said to be planar, if it can be drawn on a plane surface without 

crossovers. A non-planar circuit cannot be drawn on a plane surface without a crossover. 

Figure 3.2 (a) is a planar circuit. Figure 3.2 (b) is a non-planar circuit and fig. 3.2 (c) is a 

planar circuit which looks like a non-planar circuit. It has already been discussed that a loop is 

a closed path. A mesh is defined as a loop which does not contain any other loops within it. To 

apply mesh analysis, our first step is to check whether the circuit is planar or not and the second 

is to select mesh currents. Finally, writing Kirchhoff‘s voltage law equations in terms of 

unknowns and solving them leads to the final solution. 



a b c 

R2 

R4 

± I1 

f e d 

 

(a) (b)  (c) 

Figure 3.2 

Observation of the Fig.3.2 indicates that there are two loops abefa,and bcdeb in the 

network .Let us assume loop currents I1 and I2with directions as indicated in the figure. 

Considering the loop abefa alone, we observe that current I1 is passing through R1, and (I1-I2) is 

passing through R2. By applying Kirchhoff’s voltage law, we can write 

Vs. =I1R1+R2(I1-I2) (3.1) 
 

 

 

 

 

R1 R3 

 

 

 

 

Vs 

 

 

 

 

 

 

Figure 3.3 

Similarly, if we consider the second mesh bcdeb, the current I2 is passing through R3 

and R4, and (I2 – I1) is passing through R2. By applying Kirchhoff’s voltage law around the 

second mesh, we have 

R2 (I2-I1) + R3I2 +R4I2 = 0 (3.2) 

I2 



By rearranging the above equations,the corresponding mesh current equations are 

I1 (R1+R2) - I2R2 =Vs. 

-I1R2 +(R2+R3+R4) I2=0 (3.3) 

 

 

By solving the above equations, we can find the currents I1 and I2,.If we observe Fig.3.3, 

the circuit consists of five branches and four nodes, including the reference node.The number 

of mesh currents is equal to the number of mesh equations. 

And the number of equations=branches-(nodes-1).in Fig.3.3, the required number of 

mesh current would be 5-(4-1)=2. 

In general we have B number of branches and N number of nodes including the 

reference node than number of linearly independent mesh equations M=B-(N-1). 

 

 

 

 

 

 

 

 

Example 3.2 Write the mesh 

current equations in the circuit shown 10 

V 2Ω 

 

 

50v 

in fig 3.4 and determine the currents. 

 

 

Figure 3.4 

Solution: Assume two mesh currents in the direction as 

indicated in fig.   3.5. The mesh current equations are 

5Ω 10Ω 



5 Ω 
 

 

10 V I1  I2  10 Ω 

2 Ω  50V 

 

Figure 3.5 

5I1 + 2(I1-I2) = 10 

 

1012 + 2(12-11) + 50= 0 (3.4) 

We can rearrange the above equations as 

7I1 -2I2 =10 

-2I1+12I2 = -50 (3.5) 

By solving the above equations, we have I1= 0.25 A, and I2 = -4.125 

Here the current in the second mesh I2, is negative; that is the actual current I2 flows opposite to 

the assumed direction of current in the circuit of fig .3.5. 

Example 3.3 Determine the mesh current I1 in the circuit shown in fig.3.6. 

 

 

 

 

 

10 V 
 

 
50 V 

5 V 
 
 
 

 
Figure 3.6 

 

 

Solution: From the circuit, we can from the following three mesh equations 

10I1+5(I1+I2) +3(I1-I3) = 50 (3.6) 

10 Ω 2 Ω    

5 Ω I2 + 

I1 1 Ω 

‐ 

3 Ω 

I3 



2I2 +5(I2+I1) +1(I2+I3) = 10 (3.7) 

 

3(I3-I1) +1(I3+I2) = -5 (3.8) 

Rearranging the above equations we get 

 

18I1+5I2-3I3=50 (3.9) 

 

5I1+8I2 + I3=10 (3.10) 

 

-3I1 + I2+ 4I3=-5 (3.11) 

According to the Cramer’s rule 

⎡50 

⎢ 

10 

⎢ 

⎢−5 

I1=⎢18 

⎢ 

⎢ 5 

⎢ 

⎣−3 

5 

8 

1 

 

5 

8 

1 

−3⎤ 

⎥ 

1 

⎥ 

4 ⎥ 1175 

= 

−3
⎥ 

35 
6 

⎥ 

1 ⎥ 

⎥ 

4 ⎦ 

Or I1= 3.3 A Similarly, 

 

⎡18 50 − 3⎤ 

⎢ ⎥ 5 10 
1 

⎢ ⎥ 

⎢− 3 − 5 4 ⎥ − 355 

 

 

 

 

 

Or I2=-0.997A 

(3.12) 

I2=⎢ 18 
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⎢ 5 

⎢ 

⎣ − 3 
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8 

1 

– 3 ⎥ = 

⎥ 

1 ⎥ 

⎥ 

4 ⎦ 

 

356 

 



I1 R2 I2 V2 I3 

 

 

 

 

 

 

I3= 

⎡18 

⎢ 

5 

⎢ 

⎢− 3 

⎢ 
18 

⎢ 

⎢ 5 

⎢ 

⎣− 3 

5 

8 

1 

 

5 

8 

1 

50 ⎤ 

⎥ 

10 

    ⎥ 

– 5⎥ 525 

⎥=   

– 3 356 

⎥ 

1 ⎥ 

⎥ 

4 ⎦ 

Or I3=1.47A (3.13) 

∴I1=3.3A, I2=-0.997A, I3=1.47A 

3.3 MESH EQUATIONS BY INSPECTION METHODThe mesh equations for a general planar network can be written 

by inspection without going through the detailed steps. Consider a three mesh networks as shown in figure 3.7 

 

The loop equation are I1R1+ R2(I1-I2) =V1 R1 R3 

R4 
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Figure 3.7 

R2( I2-I1)+I2R3= -V2 3.14 

R4I3+R5I3=V2 3.15 

Reordering the above equations, we have 

(R1+R2)I1-R2I2=V1 3.16 

-R2I1+(R2+R3)I2=-V2 3.17 

(R4+R5)I3=V2 3.18 

The general mesh equations for three mesh resistive network can be written as 

R11I1 ± R12I2 ± R13I3= Va 3.19 



± R21I1+R22I2 ± R23I3= Vb 3.20 

± R31I1 ± R32I2+R33I3= Vc 3.21 

By comparing the equations 3.16, 3.17 and 3.18 with equations 3.19, 3.20 and 3.21 respectively, 

the following observations can be taken into account. 

1. The self-resistance in each mesh 

2. The mutual resistances between all pairs of meshes and 3. The algebraic 

sum of the voltages in each mesh. 

The self-resistance of loop 1, R11=R1+R2, is the sum of the resistances through which I1 

passes. 

The mutual resistance of loop 1, R12= -R2, is the sum of the resistances common to loop 

currents I1 and I2. If the directions of the currents passing through the common resistances are 

the same, the mutual resistance will have a positive sign; and if the directions of the currents 

passing through the common resistance are opposite then the mutual resistance will have a 

negative sign. 

Va=V1 is the voltage which drives the loop 1. Here the positive sign is used if the 

direction of the currents is the same as the direction of the source. If the current direction 

is opposite to the direction of the source, then the negative sign is used. 

Similarly R22=R2+R3 and R33=R4+R5 are the self-resistances of loops 2 and 3 

respectively. The mutual resistances R13=0, R21= -R2, R23=0, R31=0, R32=0 are the sums 

of the resistances common to the mesh currents indicated in their subscripts. 

Vb= -V2, Vc= V2 are the sum of the voltages driving their respective loops. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3.4 write the mesh equation for the circuit shown in fig. 3.8 
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Figure 3.8 

Solution : the general equation for three mesh equation are 

 

R11I1 ± R12I2 ± R13I3=Va (3.22) 

± R21I1+R22I2 ± R23I3=Vb (3.23) 

 

± R31I1 ± R32I2+R33I3=Vc (3.24) 

Consider equation 3.22 

R11=self resistance of loop 1=(1Ω+ 3 Ω +6 Ω) =10 Ω 

 

R12= the mutual resistance common to loop 1 and loop 2 = -3 Ω 

Here the negative sign indicates that the currents are in opposite direction . 

R13= the mutual resistance common to loop 1 & 3= -6 Ω 

Va= +10 V, the voltage the driving the loop 1. 

Here he positive sign indicates the loop current I1 is in the same direction as the source 

element. 

Therefore equation 3.22 can be written as 

10 I1- 3I2-6I3= 10 V (3.25) 

Consider Eq. 3.23 

R21= the mutual resistance common to loop 1 and loop 2 = -3 Ω 

R22= self resistance of loop 2=(3Ω+ 2 Ω +5 Ω) =10 Ω 

R23=0, there is no common resistance between loop 2 and 3. 

Vb = -5 V, the voltage driving the loop 2. 



 R2  

+ V I1 I2 R3 I3 

- 

1 I 2 3 

Therefore Eq. 3.23 can be written as 

-3I1 + 10I2= -5V (3.26) 

Consider Eq. 3.24 

R31= the mutual resistance common to loop 1 and loop 3 = -6 Ω 

R32= the mutual resistance common to loop 3 and loop 2 = 0 

R33= self resistance of loop 3=(6Ω+ 4 Ω) =10 Ω 

Vc= the algebraic sum of the voltage driving loop 3 

=(5 V+20V)=25 V (3.27) 

Therefore, Eq3.24can be written as -6I1 + 10I3= 25V 

-6I1-3I2-6I3= 10V 

-3I1+10I2=-5V 

-6I1+10I3=25V 

3.4 SUPERMESH ANALYSIS 

Suppose any of the branches in the network has a current source, then it is slightly difficult to 

apply mesh analysis straight forward because first we should assume an unknown voltage 

across the current source, writing mesh equation as before, and then relate the source current 

to the assigned mesh currents. This is generally a difficult approach. On way to overcome this 

difficulty is by applying the supermesh technique. Here we have to choose the kind of 

supermesh. A supermesh is constituted by two adjacent loops that have a common current 

source. As an example, consider the network shown in the figure 3.9. 
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Figure 3.9 

Here the current source I is in the common boundary for the two meshes 1 and 2. This current 

source creates a supermesh, which is nothing but a combination of meshes 1 and 2. 

R1I1 + R3(I2-I3)=V 

 

Or R1I1 + R3I2 - R4I3= V 

Considering mesh 3, we have 

R3(I3-I2)+ R4I3=0 
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Finally the current I from current source is equal to the difference between two mesh currents 

i.e. 

I1-I2=I 

we have thus formed three mesh equations which we can solve for the three unknown currents 

in the network. 

Example 3.5. Determine the current in the 5Ω resistor in the network given in Fig. 3.10 
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Figure 3.10 

Solution: - From the first mesh, i.e. abcda, we have 

50 = 10(I1-I2) + 5(I1-I3) 

 

Or 15I1-10I2 -5I3 =50 (3.28) 

 

 

From the second and third meshes. we can form a super mesh 

10(I2-I1)+2I2 +I3+5(I3-I1)=0 

 

Or  -15I1+12I2 +6I3 =0 (3.29) 

The current source is equal to the difference between II and III mesh currents 

 

i.e.  I2-I3 = 2A (3.30) 

Solving 3.28.,3.29 and 3.30. we have 

I1 =19.99A,I2= 17.33 A, and I3 = 15.33 A 

The current in the 5Ω resistor =I1 -I3 

=19.99 -15.33=4.66A 

The current in the 5Ω resistor is 4.66A. 



Example 3.6. Write the mesh equations for the circuit shown in fig. 3.11 and determine the 

currents, I1, I2 and I3. 
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Figure 3.11 

 

 

Solution ; In fig 3.11, the current source lies on the perimeter of the circuit, and the first 

mesh is ignored. Kirchhoff‘s voltage law is applied only for second and third meshes . 

From the second mesh, we have 

3(I2-I1)+2(I2-I3)+10 =0 

Or -3I1 +5I2-2I3 = -10 (3.31) 

 

 

From the third mesh, we have 

I3 + 2 (I3 -I2) =10 

Or -2I2+3I3 =10 (3.32) 

From the first mesh, I1 =10A (3.33) 

From the abovethree equations, we get 

I1=10A, I2 =7.27, I3 =8.18A 

 

 

3.5 NODALANALYSIS 

In the chapter I we discussed simple circuits containing only two nodes, including the reference 

node. In general, in a N node circuit, one of the nodes is chosen as the reference or datum node, then it 

is possible to write N -1nodal equations by assuming N-1 node voltages. For example,a10 node circuit 

requires nine unknown voltages and nine equations. Each node in a circuit can be assigned a number or 

a letter. The node voltage is the voltage of a given node with respect to one particular node, called the 

10V 

I1 

I2 I3 

10 A 3Ω 

2Ω 

I II III 



1 2 

R2 R4 

R1 R3 

reference node, which we assume at zero potential. In the circuit shown in fig. 3.12, node 3 is assumed 

as the Reference node. The voltage at node 1 is the voltage at that node with respect to node 3. Similarly, 

the voltage at node 2 is the voltage at that node with respect to node 3. Applying Kirchhoff’s current 

law at node 1, the current entering is the current leaving (See Fig.3.13) 
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Figure 3.13 

 

I1= V1/R1 + (V1-V2)/R2 

Where V1 and V2 are the voltages at node 1 and 2, respectively. Similarly, at node 2.the 

current entering is equal to the current leaving as shown in fig. 3.14 

 

 

 

 

 

Figure 3.14 
 

 

 
 

 

(V2-V1)/R2 + V2/R3 + V2/(R4+R5) =0 

Rearranging the above equations, we have 

V1[1/R1+1/R2]-V2(1/R2)= I1 

R2 

1 2 

R1 

R2 R4 

R3 R5 



10Ω 2Ω 

3Ω 

5Ω 5A 1Ω 

-V1(1/R2) + V2[1/R2+1/R3+1/(R4+R5)]=0 

From the above equations we can find the voltages at each node. 

Example 3.7 Determine the voltages at each node for the circuit shown in fig 3.15 
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Figure 3.15 

 

Solution : At node 1, assuming that all currents are leaving, we have 

(V1-10)/10 + (V1-V2)/3 +V1/5 + (V1-V2)/3 =0 

Or V1[1/10 +1/3 +1/5 + 1/3 ] - V2[ 1/3 + 1/3 ] = 1 

0.96V1-0.66V2 = 1 (3.36) 

At node 2, assuming that all currents are leaving except the current from current source, we 

have 

(V2-V1)/3+ (V2-V1)/3+ (V2-V3)/2 = 5 

-V1[2/3]+V2[1/3 +1/3 + 1/2]-V3(1/2) =5 

-0.66V1+1.16V2-0.5V3= 5 (3.37) 

 

 

At node 3 assuming all currents are leaving, we have 

(V3-V2)/2 + V3/1 + V3/6 =0 

-0.5V2 + 1.66V3=0 (3.38) 

Applying Cramer’s rule we get 

 

⎡ 1 − 0.66 0 ⎤ 

⎢ ⎥ 

5 1.16 − 0.5 

⎢ ⎥ 

⎢ 0 − 0.5 1.66 ⎥ 7.154 
 

⎢ ⎢− 
0.66 
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⎣ 0 

⎥ 

1.16 − 0.5⎥ 

⎥ 



V1=    0.96 − 0.66 0 ⎥ = 

0.887 = 8.06 
 

 

 
 

 

 

 

 

 

 

 

⎢− 0.66 1.16 − 0.5⎥ 

⎢ ⎥ 

⎣ 0 − 0.5 1.66 ⎦ 

      

V2=⎢⎢ 0.96 − 0.66 0 ⎥⎥ = 0.887 =10.2 

⎡ 0.96 

⎢ 

– 0.66 

– 0.66 1 ⎤ 

1.16 ⎥ 

– 0.5 5 

⎢   ⎥ 

⎢ 0 

V3= 
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0.96 

⎢ ⎢− 
0.66 

⎢ 

⎣ 0 

– 0.66 

1.16 

– 0.5 

0 ⎥ 2.73 

0 ⎥=  0.887 

= 3.07 

⎥ 

– 0.5⎥ 

⎥ 

1.66 ⎦ 
3.6 NODAL EQUATIONS BY INSPECTION METHOD The nodal equations for a general planar network can also be written by 

inspection without going through the detailed steps. Consider a three node resistive network, including the reference node, as shown in fig 

3.16 
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Figure 3.16 

In fig. 3.16 the points a and b are the actual nodes and c is the reference node. 

Now consider the nodes a and b separately as shown in fig 3.17(a) and (b) 

a b 
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c 

⎢Similarly, 
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Figure 3.17 

In fig 3.17 (a), according to Kirchhoff’s current law we have 

I1+I2+I3=0 

(Va-V1)/R1 +Va/R2+ (Va-Vb)/R3= 0 (3.39) 

In fig 3.17 (b) , if we apply Kirchhoff’s current law 

I4+ I5= I3 

∴(Vb-Va)/R3 + Vb/R4+(Vb-V2)/R5=0 (3.40) 

Rearranging the above equations we get 
 

(1/R1+1/R2+1/R3)Va-(1/R3)Vb=(1/R1)V1 (3.41)  

(-1/R3)Va+ (1/R3+1/R4+1/R5)Vb=V2/R5 

In general, the above equation can be written as 

(3.42) 

GaaVa + GabVb=I1 
 

(3.43) 

GbaVa + GbbVb=I2 
 

(3.44) 

By comparing Eqs 3.41,3.42 and Eqs 3.43, 3.44 we have the self conductance at node 

a, Gaa=(1/R1 + 1/R2 + 1/R3) is the sum of the conductances connected to node a. Similarly, Gbb= 

(1/R3 + 1/R4 +1/R5) is the sum of the conductances connected to node b. Gab=(-1/R3) is the sum 

of the mutual conductances connected to node a and node b. Here all the mutual conductances 

have negative signs. Similarly, Gba= (-1/R3) is also a mutual conductance connected between 

nodes b and a. I1 and I2 are the sum of the source currents at node a and node b, respectively. 

The current which drives into the node has positive sign, while the current that drives away 

from the node has negative sign. 
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Example 3.8 for the circuit shown in the figure 3.18 write the node equations by the 

inspection method. 
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Fig 3.18 

 

Solution:- 

The general equations are 

 

GaaVa+GabVb=I1 (3.45) 

 

GbaVa + GbbVb=I2 (3.46) 

Consider equation 3.45 

 

Gaa=(1+ 1/2 +1/3) mho. The self conductance at node a is the sum of the conductances 

connected to node a. 

 

Gbb = (1/6 + 1/5 + 1/3) mho the self conductance at node b is the sum of conductances connected 

to node b. 

 

Gab =-(1/3) mho, the mutual conductances between nodes a and b is the sum of the 

conductances connected between node a and b. 

Similarly Gba = -(1/3), the sum of the mutual conductances between nodes b and a. 

I1=10/1 =10 A, the source current at node a, 

I2=(2/5 + 5/6) = 1.23A, the source current at node b. 

 

Therefore, the nodal equations are 

a b 

1 Ω 3Ω 2Ω 

5Ω 

10V 2Ω 

2 V 5 V 



1 2 3 

R2 VX 

R1 R3 R4 

VY 

1.83Va-0.33Vb=10 (3.47) 

 

-0.33Va+0.7Vb= 1.23 (3.48) 

3.7 SUPERNODE ANALYSIS 

Suppose any of the branches in the network has a voltage source, then it is slightly difficult to 

apply nodal analysis. One way to overcome this difficulty is to apply the supernode technique. 

In this method, the two adjacent nodes that are connected by a voltage source are reduced to a 

single node and then the equations are formed by applying Kirchhoff’s current law as usual. 

This is explained with the help of fig. 3.19 
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FIG 3.19 

 

 

 

 

It is clear from the fig.3.19, that node 4 is the reference node. Applying Kirchhoff’s current law 

at node 1, we get 

 

I=(V1/R1 ) + (V1-V2)/R2 

 

Due to the presence of voltage source Vχ in between nodes 2 and 3 , it is slightly difficult 

to find out the current. The supernode technique can be conveniently applied in this case. 

Accordingly, we can write the combined equation for nodes 2 and 3 as under. 

(V2-V1)/R2 + V2/R3 + (V3-Vy)/R4 +V3/R5= 0 

The other equation is 

V2-V3 =Vx 

From the above three equations, we can find the three unknown voltages. 



Example 3.9 Determine the current in the 5 Ω resistor for the circuit shown in fig. 
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fig. 3.20 

 

 

 

Solution. At node 1 

 

10= V1/3 + (V1-V2)/2 

 

Or V1[1/3 +1/2]-(V2/2)-10=0 

 

0.83V1-0.5V2-10 = 0 (3.49) 

 

 

At node 2 and 3, the supernode equation is 

 

(V2-V1)/2 + V2/1 + (V3-10)/5 +V3/2 = 0 

 

Or –V1/2 +V2[(1/2)+1]+ V3[1/5 + 1/2]=2 

 

Or -0.5V1+ 1.5V2+0.7V3-2=0 (2.50) 

 

The voltage between nodes 2 and 3 is given by 

 

V2-V3=20 (3.51) 

V1 V2 +_--- - V3 
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INTRODUCTION 

Chapter-04 

NETWORK THEORM 

This chapter introduces a number of theorems that have application throughout the field of 

electricity and electronics. Not only can they be used to solve networks such as encountered in 

the previous chapter, but they also provide an opportunity to determine the impact of a 

particular source or element on the response of the entire system. In most cases, the network to 

be analyzed and the mathematics required to find the solution are simplified. All of the 

theorems appear again in the analysis of ac networks. In fact, the application of each theorem 

to ac networks is very similar in content to that found in this chapter. 

The first theorem to be introduced is the superposition theorem, followed by Thévenin’s 

theorem, Norton’s theorem, and the maximum power transfer theorem. The chapter concludes 

with a brief introduction to Millman’s theorem and the substitution and reciprocity theorems. 

 

SUPERPOSITION THEOREM 
The superposition theorem states that “The current through, or voltage across, any 

element of a network is equal to the algebraic sum of the currents or voltages produced 

independently by each source.” 

In other words, this theorem allows us to find a solution for a current or voltage using 

only one source at a time. Once we have the solution for each source, we can combine the 

results to obtain the total solution. The term algebraic appears in the above theorem statement 

because the currents resulting from the sources of the network can have different directions, 

just as the resulting voltages can have opposite polarities. 

If we are to consider the effects of each source, the other sources obviously must be 

removed. Setting a voltage source to zero volts is like placing a short circuit across its terminals. 

Therefore, when removing a voltage source from a network schematic, replace it with a direct 
connection (short circuit) of zero ohms. Any internal resistance associated with the source must 

remain in the network. 

Setting a current source to zero amperes is like replacing it with an open circuit. Therefore, 

when removing a current source from a network schematic, replace it by an open circuit of 

infinite ohms. Any internal resistance associated with the source must remain in the network. 

The above statements are illustrated in Fig. 



 

 



EXAMPLE 9.1 

a. Using the superposition theorem, determine the current 

throughresistor R2 for the network in Fig. 9.2. 

Solutions: 

In order to determine the effect of the 36 V voltage source, 

the currentsource must be replaced by an open-circuit 

equivalent as shownin Fig. 9.3. The result is a simple series 

circuit with a current equal to 

 

 

 

Examining the effect of the 9 A current source requires replacing 

the 36 V voltage source by a short-circuit equivalent as shown in 

Fig. 9.4. The result is a parallel combination of resistors R1 and 2. 

Applying the current divider rule results in 

 

 

Since the contribution to current I2 has the same direction for 

each source, as shown in Fig. 9.5, the total solution for current I2 

isthe sum of the currents established by the two sources. That is, 

 

 

 

 

 

EXAMPLE 9.2 Using the superposition theorem, determine the 

currentthrough the 12 resistorsin Fig. 9.8. Note that this is a two-source networkof the 

type examinedin the previous chapter when we appliedbranch-current analysis and mesh 

analysis. 

 

 

 

 

 

 

 

 

 

 

 

Solution: Considering the effects of the 54 V source requires replacingthe 48 V source by a 

short-circuit equivalent as shown in Fig. 9.9.The result is that the 12 and 4 resistors are 

in parallel.The total resistance seen by the source is therefore, 



 



 

 

EXAMPLE 9.3 Using the superposition theorem, determine current I1 for the network in 

 

 

 

 

 

 

 

 

 

 

 

Solution: Since two sources are present, there are two networks 

to beanalyzed. First let us determine the effects of the voltage 

source by settingthe current source to zero amperes as shown 

in Fig. 9.13. Note thatthe resulting current is defined as I1’ 

because it is the current throughresistor R1 due to the voltage 

source only. 

Due to the open circuit, resistor R1 is in series (and, in fact, in 

parallel)with the voltage source E. The voltage across the 

resistor is the appliedvoltage, and current I1’ is determined by 

 

 

 

 

Now for the contribution due to the currentsource. 

Setting the voltagesource to zero volts results in the 

network in Fig. 9.14, this presents us with an 

interesting situation.The current source has been 

replaced witha short-circuit equivalent that is 

directly across the current source andresistor R1. 

Since the source current takes the path of least 

resistance, it 

chooses the zero ohm path of the inserted short- 

circuit equivalent, andthe current through R1 is zero 

amperes. This is clearly demonstrated by an 

application of the current divider rule as follows: 



 



 

 

 



9.3 THÉVENIN’S THEOREM 

The next theorem to be introduced, Thévenin’s theorem, is probably one of the most 

interesting in that it permits the reduction of complex networks to a simpler form for analysis 

and design. 

In general, the theorem can be used to do the following: 

• Analyze networks with sources that are not in series or parallel. 

• Reduce the number of components required to establish the same characteristics at the 

output terminals. 

• Investigate the effect of changing a particular component on the behaviour of a network 

without having to analyze the entire network after each change. 

All three areas of application are demonstrated in the examples to 

follow. 

Thévenin’s theorem states the following: 

Any two-terminal dc network can be replaced by an equivalent circuit 

consisting solely of a voltage source and a series resistor as shown 

in 

Fig. 9.23. 

The theorem was developed by Commandant Leon-Charles Thévenin in 

1883 as described in Fig. 9.24. 

To demonstrate the power of the theorem, consider the 

fairly complex network of Fig. 9.25(a) with its two sources and 

series-parallel connections. 

The theorem states that the entire network inside the blue shaded 

area can be replaced by one voltage source and one resistor as 

shown in Fig. 9.25(b). If the replacement is done properly, the 

voltage across, and the current through, the resistor RL will be the 

same for each network. The value of RL can be changed to any 



 

 

 

 

value, and the voltage,current, orpower to the load resistor is the same for each 

configuration. 

Now, this is a very powerful statement—one that is verified in the examplesto follow. 

The question then is, How can you determine the proper value ofThévenin voltage and 

resistance? In general, finding the Thévenin resistance value is quite straightforward. Finding 

the Thévenin voltage can bemore of a challenge and, in fact, may require using the 

superpositiontheorem. 

Fortunately, there is a series of steps that will lead to the proper valueof each parameter. 

Although a few of the steps may seem trivial at first,they can become quite important when 

the network becomes complex. 

 

Thévenin’s Theorem Procedure 

Preliminary: 

1. Remove that portion of the network where the Thévenin equivalentcircuit is found. In 

Fig. 9.25(a), this requires that the load resistorRL be temporarily removed from the 

network. 

2. Mark the terminals of the remaining two-terminal network.(The importance of this step 

will become obvious as we progress through some complex networks.)RTh : 

3. Calculate RTh by first setting all sources to zero (voltage sourcesare replaced by short 

circuits and current sources by open circuits)and then finding the resultant resistance 

between the two markedterminals. (If the internal resistance of the voltage and/or current 

sources is included in the original network, it must remain whenthe sources are set to 

zero.)ETh : 

4. Calculate ETh by first returning all sources to their original positionand finding the 

open-circuit voltage between the marked terminals.(This step is invariably the one that 

causes most confusionand errors. In all cases, keep in mind that it is the open-circuit 

potential between the two terminals marked in step 2.) Conclusion: 

5. Draw the Thévenin equivalentcircuit with the portion of thecircuitpreviously removed 

replaced between the terminals of theequivalent circuit. This step is indicated by the 

placement of theresistor RL between the terminals of the Thévenin equivalentcircuitas 

shown in Fig. 9.25(b). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

level of the resulting voltage to establish the measured resistance 

level. In Fig. 9.28(b), the trickle current of the ohmmeter approaches 

the network through terminal a, and when it reaches the junction of R1 

and R2,it splits as shown. The fact that the trickle current splits and 

then recombines at the lower node reveals that the resistors are in 

parallel as far as the ohmmeter reading is concerned. In essence, the 

path of the sensing current of the ohmmeter has revealed how the 

resistors are connected tothe two terminals of interest and how the 

Thévenin resistance should bedetermined. Remember this as you 

work through the various examplesin this section. 
Step 4: Replace the voltage source (Fig. 9.29). For this case, the 

opencircuitvoltage ETh is the same as the voltage drop across the 6 

resistor. 

Applying the voltage divider rule gives 



 

 

 

 

EXAMPLE 9.7 Find the Thévenin equivalent circuit for the network in the shaded area of 

the network in Fig. 9.32. 

Solution: 

Steps 1 and 2: See Fig. 9.33. 
Step 3: See Fig. 9.34. The current source has been replaced with anopen-circuit equivalent 

and the resistance determined between terminals a and b. 

In this case, an ohmmeter connected between terminals a and b sendsout a sensing current 

that flows directly through R1 and R2 (at the samelevel). The result is that R1 and R2 are in 

series and the Thévenin resistanceis the sum of the two, 
 

 

 

 

 

 

 

 

 

 

 

 

 

Step 4: See Fig. 9.35. In this case, since an open circuit exists betweenthe two marked 

terminals, the current is zero between these terminals resistor. The 

voltage drop across R2 is, therefore, 

V2 = I2R2 = (0) R2 = 0 V 
and ETh = V1 = I1R1 = IR1 = (12 A)(4 _) = 48 V 

Step 5: See Fig. 9.36. 

EXAMPLE 9.8 Find the Thévenin 

equivalent circuit for the network in 

the shaded area of the network in Fig. 

9.37. Note in this example thatthere is 

no need for the section of the network 

to be preserved to be at the“end” of 

the configuration. 



Solution: 

Steps 1 and2: See Fig. 9.38 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3: See Fig. 9.39. Steps 1 and 2 are relatively easy to apply, but nowwe must be careful 

to “hold” onto the terminals a and b as the Théveninresistance and voltage are determined. In 

Fig. 9.39, all the remainingelements turn out to be in parallel, and the network can be 

redrawn asshown. We have 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 4: See Fig. 9.40. In this case, the network can be redrawn as shownin Fig. 9.41. Since 

the voltage is the same across parallel elements, thevoltage across the series resistors R1 and 

R2 is E1, or 8 V. Applying thevoltage divider rule gives 



 

 

 

 

Step 5: See Fig. 9.42. 

 

EXAMPLE 9.9 Find the 

Thévenin equivalent circuit for the 

network inthe shaded area of the 

bridge network in Fig. 9.43. 
 

 
 

 

 

 

 

Solution: 

Steps 1 and 2: See Fig. 9.44. 
Step 3: See Fig. 9.45. In this case, the short-circuit replacement of the voltagesource E 

provides a direct connection between c and c_ in Fig. 9.45(a),permitting a “folding” of the 

network around the horizontal line of a-b toproduce the configuration in Fig. 9.45(b). 
 



 

 

 
 

 

 

 

 

 

 

 

 

 

EXAMPLE 9.11 For the network of Fig. 9.54, 

a. Find the Thévenin equivalent circuit for the 

portion of the networkin the shaded area. 

b. Reconstruct the network of Fig. 9.54 with the 

Thévenin equivalentnetwork in place. 

c. Using the resulting network of part (b) find 

the voltage Va. 

Solutions: 

a. Steps 1 and 2: See Fig. 9.55. 
Step 3: See Fig. 9.56. 

 

 

 

Step 4: Applying the superposition theorem, we will first find the 

effect of the voltage source on the Thévenin voltage using the network 

of Fig. 9.57. Applying the voltage divider rule: 



 

 

 

 

 

 

 



9.4 NORTON’S THEOREM 
Any two-terminal linear bilateral dc network can be 

replaced by an 

equivalentcircuit consisting of a current source and a 

parallel 

resistor, as shown in Fig. 9.65. 

 

 

 

 

 

 

 

 

 

 

The discussion of Thévenin’s theorem with respect to the equivalentcircuit can also be 

applied to the Norton equivalent circuit. The stepsleading to the proper values of IN and RN 

are now listed. 

Norton’s Theorem Procedure 
Preliminary: 

1. Remove that portion of the network across which the Nortonequivalent circuit is found. 

2. Mark the terminals of the remaining two-terminal network. 

RN: 

3. Calculate RN by first setting all sources to zero (voltage sources are replaced with short 

circuits and current sources with opencircuits) and then finding the resultant resistance 

between the twomarked terminals. (If the internal resistance of the voltage and/orcurrent 

sources is included in the original network, it must remainwhen the sources are set to 

zero.) Since RN _ RTh, the procedureand value obtained using the approach described for 

Thévenin’stheorem will determine the proper value of RN. 

IN: 

4. Calculate IN by first returning all sources to their original positionand then finding the 

short-circuit current between the markedterminals. It is the same current that would be 

measured by anammeter placed between the marked terminals. 

Conclusion: 

5. Draw the Norton equivalent circuit with the portion of the circuitpreviously removed 

replaced between the terminals of the equivalentcircuit. 

The Norton and Thévenin equivalent circuits can also be found fromeach other by using the 

source transformation discussed earlier in thischapter and reproduced in Fig. 9.66. 



EXAMPLE 9.12 Find the Norton equivalent circuit for 

the network inthe shaded area in Fig. 9.67. 

Solution: 

Steps 1 and 2: See Fig. 9.68. 
Step 3: See Fig. 9.69, and 

 

 

Step 4: See Fig. 9.70, which clearly indicates that the 

short-circuit connectionbetween terminals a and b is in 

parallel with R2 and eliminatesits effect. IN is therefore 

the same as through R1, and the full battery voltage 

appears across R1 since 

 

 

 

 

 

 

Step 5: See Fig. 9.71. Thiscircuit is the same as the first 

one consideredin the development of Thévenin’s 

theorem. A simple conversion indicatesthat the 

Thévenin circuits are, in fact, the same (Fig. 9.72). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE 9.13 Find the Norton equivalent circuit for the network 

external to the 9 _ resistor in Fig. 9.73. 

Solution: 

Steps 1 and 2: See Fig. 9.74. 



 

 

 

 

 

EXAMPLE 9.14 (Two sources) Find the Norton equivalent circuit forthe portion of the 

network to the left of a-b in Fig. 9.78. 



 

 

 

 

9.5 MAXIMUM POWER TRANSFER 
 
 
 
 
 
 
 
 
 
 
 

THEOREM 

When designing a circuit, it is often important to be able to answer oneof the following 

questions: 

What load should be applied to a system to ensure that the load isreceiving maximum 

power from the system? 

Conversely: 

For a particular load, what conditions should be imposed on thesource to ensure that it 

will deliver the maximum power available? 

Even if a load cannot be set at the value that would result in maximumpower transfer, it is 

often helpful to have some idea of the valuethat will draw maximum power so that you can 

compare it to the load athand. For instance, if a design calls for a load of 100 , to ensure 

thatthe load receives maximum power, using a resistor of 1 or 1 k results in a power 

transfer thatis much less than the maximum possible. 

However, using a load of 82 or 120 probably results in a fairlygood level of power 

transfer.Fortunately, the process of finding the load that will receive maximumpower from a 

particular system is quite straightforward due to the maximum power transfer theorem, 

which states the following: 

A load will receive maximum power from a network when itsresistance is exactly equal to 

the Thévenin resistance of the networkapplied to the load. That is, 

 



 

The total power delivered by a supply such as ETh is absorbed by both the Thévenin 

equivalent resistance and the load resistance. Any power delivered by the source that does 

not get to the load is lost to the Thévenin resistance. 

Under maximum power conditions, only half the power delivered by the source gets to the 
load. Now, that sounds disastrous, but remember that we are starting out with a fixed 

Thévenin voltage and resistance, and the above simply tells us that we must make the two 

resistance levels equal if we want maximum power to the load. On an efficiency basis, we are 

working at only a 50% level, but we are content because we are getting maximum power out 
of our system. 

The dc operating efficiency is defined as the ratio of the power delivered to the load (PL) to the 

power delivered by the source (Ps). That is, 
 

 

If efficiency is the overriding factor, then the load should be much larger than the internal 

resistance of the supply. If maximum power transfer is desired and efficiency less of a 

concern, then the conditions dictated by the maximum power transfer theorem should be 

applied. 

A relatively low efficiency of 50% can be tolerated in situations where power levels are 
relatively low, such as in a wide variety of electronic systems, where maximum power 

transfer for the given system is usually more important. However, when large power levels 

are involved, such as at generating plants, efficiencies of 50% cannot be tolerated. In fact, a 

great deal of expense and research is dedicated to raising power generating and transmission 

efficiencies a few percentage points. Raising an efficiency level of a 10 MkW power plant 
from 94% to 95% (a 1% increase) can save 0.1 MkW, or 100 million watts, of power—an 

enormous saving. In all of the above discussions, the effect of changing the load was 

discussed for a fixed Thévenin resistance. Looking at the situation from a different viewpoint, 

we can say 

if the load resistance is fixed and does not match the applied Thévenin equivalent 

resistance, then some effort should be made (if possible) to redesign the system so that the 

Thévenin equivalent resistance is closer to the fixed applied load. 

In other words, if a designer faces a situation where the load resistance is fixed, he or she 

should investigate whether the supply section should be replaced or redesigned to create a 

closer match of resistance levels to produce higher levels of power to the load. 



For the Norton equivalent circuit in Fig. 9.90, maximum power willbe delivered to the load 

when, 

RL = RN ..................................................... (9.5) 
This result [Eq. (9.5)] will be used to its 
fullest advantage in the analysis of transistor 

networks, where the most frequently applied 

transistorcircuit model uses a current source 

rather than a voltage source. 

For the Norton circuit in Fig. 9.90, 

 

 

 

 

 

To demonstrate that maximum power is 

indeed transferred to the load 

under the conditions defined above, consider 

the Thévenin equivalentcircuit in Fig. 9.85. 

Before getting into detail, however, if you 

were to guess what valueof RL would result in 

maximum power transfer to RL, you might think 

that the smaller the value of  RL, the better it is 

because the currentreaches a maximum when it 

is squared in the power equation. The problem 

is, however, that in the equation PL = I 2 

LRL, theload resistance is amultiplier. As it gets 

smaller, it forms a smaller product. Then again, 

youmight suggest larger values of  RL because 

the output voltage increases, and power is 

determined by PL = V 2 L /RL. This time, 

however, the loadresistance is in the denominator of the equation and causes the resulting 

power to decrease. A balance must obviously be made between the load resistance and the 

resulting current or voltage. The following discussion shows that 

maximum power transfer occurs when the load voltage and current are one-half their 

maximum possible values. 

For the circuit in Fig. 9.85, the current through the load is determined by 



power has a maximum value of 100 W, the current is 3.33 A, or one-half its maximum value 

of 6.67 A (as would result with a short circuit across the output terminals), and the voltage 

across the load is 30 V, or one-half its maximum value of 60 V (as would result with an open 

circuit across its output terminals). As you can see, there is no question that maximum power 

is transferred to the load when the load equals the Thévenin value. 

The power to the load versus the range of resistor values is provided in Fig. 9.86. Note in 

particular that for values of load resistance less than the Thévenin value, the change is dramatic 

as it approaches the peak value. However, for values greater than the Thévenin value, the drop 

is a great deal more gradual. This is important because it tells us the following: 

If the load applied is less than the Thévenin resistance, the power to the load will drop off 

rapidly as it gets smaller. However, if the applied load is greater than the Thévenin resistance, 

the power to the load will not drop off as rapidly as it increases. 
 

 



 



 

 

 

 

 

 



 



 

 



CHAPTER-05 

AC CIRCUIT AND RESONANCE 

 

Direct Current Alternating Current 

 

 

 

 

(1) D.C. always flow in one direction 

and whose magnitude remains 

constant. 

(1) A.C. is one which reverse 

periodically in 

direction and whose magnitude 

undergoes a definite cycle changes 

in definite intervals of time. 

(2) 
 

High cost of production. 
(2) 

Low cost of production 

(3) 

(4) 

It is not possible by D.C. Because 

D.C. is dangerous to the 

transformer. 

Its transmission cost is too high. 

(3) 

(4) 

By using transformer A.C. voltage 

can be decreased or increased. 

A.C. can be transmitted to a long 

distance economically. 

 

 

Definition of A.C. terms :- 

Cycle : It is one complete set of +ve and –ve values of alternating quality spread 

over 360 or 2 radan. 

Time Period : It is defined as the time required to complete one cycle. 

Frequency : It is defined as the reciprocal of time period. i.e. f = 1/ T 

Or 

It is defined as the number of cycles completed per second. 

Amplitude : It is defined as the maximum value of either +ve half cycle or –ve 

half cycle. 

Phase : It is defined as the angular displacement between two haves is zero. 



OR 

Two alternating quantity are in 

phase when each pass through their zero 

value at the same instant and also attain 

their maximum value at the same instant in 

a given cycle. 

 

V = Vm sin wt i = 

Im sin wt 

 

Phase Difference :- It is defined as the angular displacement between two 

alternating quantities. 

OR 

If the angular displacement between two waves are not zero, then that is known 

as phase difference. i.e. at a particular time they attain unequal distance. 
 

OR 

Two quantities are out of phase if they reach their maximum value or minimum 

value at different times but always have an equal phase angle between them. 

Here V = Vm sin wt 

i = Im sin (wt-φ) 

In this case current lags voltage by an angle ‘φ’. 

Phasor Diagram : 

Generation of Alternating emf :- 

Consider a rectangular coil of ‘N” turns, area of cross-section is ‘A’ nt2 is 

placed in 

x-axis in an uniform magnetic field of maximum flux density Bm web/nt2. The 

coil is rotating in the magnetic field with a velocity of w radian / second. At time 

t = 0, the coil is in x-axis. After interval of time ‘dt’ second the coil make rotating 

in anti-clockwise direction and makes an angle ‘θ’ with x-direction. 

The perpendicular component of the magnetic field is φ = φn cos wt 

According to Faraday’s Laws of electro-magnetic Induction 



 

e =−N   

dφ 

 
dt 

d 

=−N  (φm 

coswt) dt 

=−N(−φmwcoswt) 

= Nwφm sin wt 

= 2πfNφm sin wt( w = 2πf ) = 2πfNBm 

Asin wt e = Em sin wt 

Where Em  =  2πfNBm  A f 

→frequency in Hz 

Bm→ Maximum flux density in Wb/mt2 

Now when θ or wt = 90° 

e = Em 

i.e. Em = 2πfNBmA 
 

Root Mean Square (R.M.S) Value :→ 

The r.m.s. value of an a.c. is defined by that steady (d.c.) current which when 

flowing through a given circuit for a given time produces same heat as produced 

by the alternating current when flowing through the same circuit for the same 

time. 

Sinuscdial alternating current is 

i = Im sin wt = Im sin θ 

The mean of squares of the instantaneous values of current over one complete 

cycle 

The square root of this value is 



Im 
2 

2 2 

2 

= 

 

= 

 

 

dθ  = 
 

 

= ⎡θ −sin 2θ ⎤ 
 

 

dθ  = 

⎢⎣ 2 ⎥⎦ 0 

 

 

= = 
Im 

 

Im 

Ir.m.s = 
= 0.707 I 

 

 

Average Value :→ 

The average value of an alternating current is expressed by that steady current 

(d.c.) which transfers across any circuit the same charge as it transferred by that 

alternating current during the sae time. 

The equation of the alternating current is i = Im sin θ 

Iav  
 

Im 

= [1−0(−1)] 
π 

2I 

Iav  

= 
I 

2 2π 
m 

4π ∫ ( 
2 0 π  

0 

) 

2π i
2 
.dθ 

∫ 
0 2π 

2π (I 

= 
I 

2 m2π 

∫ m 

sinθ )
2 

2 dθ 

 ∫ s2i θ  θ π n .d 
0 

I 
2 2 π 

m 

2π ∫ 
⎛   

0 ⎝ 
⎜ 
1  cos 2 

2 

  
⎟ 
⎠ 

I 
2 

m 

4π 

Im 
2 2π 

4π 
∫ 
0 ⎝ 

⎛
⎜ 2π − 

sin 4π ⎞
⎟ 

2 ⎠ 

2π 

m 

= 
I 

2 2π 
m 

4π ∫ ( 
1  cos 2 d    

0 

) 



2×Maximum Current 

Iav  

Hence, Iav = 0.637Im 

The average value over a complete cycle is zero 

Amplitude factor/ Peak factor/ Crest factor :- It is defined as the ratio of 

maximum value to r.m.s value. 

MaximumValue Im 

Ka = = = 2 =1.414 

R.M.S.Value 

2 

Form factor : - It is defined as the ratio of r.m.s value to average value. 

r.m.s.Value 0.707Im 

Kf = = = 2 =1.414 

Average.Value 0.637Im 

Kf = 1.11 

Phasor or Vector Representation of Alternating Quantity :→ 

An alternating current or voltage, (quantity) in a vector quantity which has 

magnitude as well as direction. Let the alternating value of current be represented 

by the equation e = Em Sin wt. The projection of Em on Y-axis at any instant gives 

the instantaneous value of alternating current. Since the instantaneous values are 

continuously changing, so they are represented by a rotating vector or phasor. A 

phasor is a vector rotating at a constant angular velocity 

At t1,e1 = Em1 sin wt1 

At t2,e2 = Em2 sin wt2 

Addition of two alternating Current :→ 

Let e1 = Em1 sin wt 

 

e2 = Em2 sin(wt −φ) 

Im 



The sum of two sine waves of the same frequency is another sine wave of 

same frequency but of a different maximum value and Phase. 

e = 

Phasor Algebra :→ 

A vector quantity can be expressed in terms of 

(i) Rectangular or Cartesian form 

(ii) Trigonometric form 

(iii) Exponential form 

(iv) Polar form 

 

 

E = a + jb 

= E(cosθ+ jsinθ) 

Where a = E cos θ is the active part b = E 

sin θ is the reactive part 

θ= tan−1⎜
⎛ b 

⎟
⎞
=Phase angle 

 

⎝ a ⎠ j 

= −1(90o) j2 

=−1(180o ) j3 

=− j(270o ) j4 

=1  (360o) 

 

 

 

 

 

 

 

 

(i) Rectangular for :- 

E = a ± jb tanθ=b/a (ii) Trigonometric form :- 

E = E(cosθ± jsinθ) 

(iii) Exponential form :- 

E = Ee± jθ 

(iv) Polar form :- 

E = E/ ± e 

e  + 1 2 
2 2 e  + 2e e cosφ 1 2 

(E = a2 +b2 ) 



Addition or Subtration :- 

E1 = a1 + jb1 

E2 = a2 + jb2 

E1 ± E2 = (a1 + a2) ± (b1 +b2 

 

φ= tan−1⎜⎜⎛⎝ ab11 ++ba22 ⎞⎟⎟⎠ 

 

Multiplication : - 

E1×E2 = (a1 + ja1) ± (a1 + jb2) 

= (a1a2 −b1b2) + j(a1a2 +b1b2) 

φ= tan−1⎜⎜⎝⎛ aa11ba22+−bb11ab22 ⎞⎟⎟⎠ 

 

E1 = E1∠θ1 

E2 = E2∠θ2 

E1×E2 = E1E2  ∠φ1 +φ2 

Division :- 

E1 = E1∠θ1 

E2 = E2∠θ2 

 E1  E1∠θ1   E1 

= = ∠θ1 −θ2 

E2 E2∠θ2 E2 

 

 

A.C. through Pure Resistance :→ 

Let the resistance of R ohm is connected across to A.C supply of applied voltage 

 

 

 

 

 

 

e = Em sin wt (1) 

Let ‘I’ is the instantaneous current . 

Here e = iR 

⇒ i = e/R 



2 

2 2 2 2 

2 

2 2 

i = Emsin wt / R (2) 

By comparing equation (1) and equation (2) we get alternating voltage and 

current in a pure resistive circuit are in phase 

Instantaneous power is given by 

P = ei 

= Em sin wt . Im sin wt 

= Em Im sin2 wt 

EmIm 2 

 

= 
m . m .(1 −cos 2wt) 

2 

P = 
Em 

. 
Im 

– 
Em 

. 
Im 

.cos 2wt 

i.e. P = 
Vm 

. 
Im 

2 
– 

Vm 
. 

2 

Im 
.cos 2wt 

2 

= .2sin wt 

2 

E I 

V I 
m m 

2 

Vm 
. 

Im 

Where . is called constant part of power. 

 

.cos2wt is called fluctuating part of power. 

 

VmIm 

The fluctuating part .cos2wt of frequency double that of voltage and current 

2 

waves. 

V I 
m 

Hence power for the whole cycle is P = 

m 

2. =Vrms.Irms 
 

 

 

A.C through Pure Inductance :→ 

Let inductance of ‘L’ henry is connected across the A.C. supply 

⇒ P = VI  watts 

2 

2 



= 

 

v =Vm sinwt (1) 

According to Faraday’s laws of electromagnetic inductance the emf induced 

across the inductance di 

V = L   dt 

di  is the rate of change of current 
dt 

di 

Vmsinwt = L   

dt 

di   Vmsinwt 

= 

dt L 

Vm 

⇒ di = sinwt.dt L 

Integrating both sides, 

Vm 

∫di 
∫ 

L sinwt.dt 

Vm ⎛ coswt ⎞ i 

= ⎜− 

 ⎟ 

L ⎝ w ⎠ 

Vm coswt i 

=− 

wL 

Vm 

i =− coswt wL 

Vm ⎛ π⎞ i 

= − sin⎜wt −   ⎟ 



wL ⎝ 2 ⎠ 

Vm ⎛ π⎞ 

=−  sin⎜wt −  ⎟ [ XL = 2πfL = wL] 

XL  ⎝ 2 ⎠ 

Maximum value of i is 

Im = Vm when sin
⎛
⎜wt −

π ⎞
⎟is unity. 

XL ⎝ 2 ⎠ 

Hence the equation of current becomes i = Im sin(wt −π/2) 

So we find that if applied voltage is rep[resented by v =Vm sinwt , then current 

flowing in a purely inductive circuit is given by i = Im sin(wt −π/2) 

Here current lags voltage by an angle π/2 Radian. 

 

Power factor = cos φ 

= cos 90° 

= 0 

Power Consumed = VI cos φ 

= VI × 0 

= 0 

Hence, the power consumed by a purely Inductive circuit is zero. 

A.C. Through Pure Capacitance : → 
 

 
Let a capacitance of ‘C” farad is connected across the A.C. supply of applied 

voltage v =Vm sin wt (1) 

Let  ‘q’ = change on plates when p.d. between two plates of capacitor is ‘v’ 

q = cv 

q = cVm sin wt 
dq d 

 = c (Vm sin wt)  dt 

dt 



⎝ ⎠ 

i = cVm sin wt 

= wcVm cos wt 

Vm 

=  = coswt 

1/ wc 

Vm 1 1 

= = coswt [  X c = = is known as capacitive reactance 

Xc wc 2πfc 

in ohm.] 

= Im coswt 

= Im sin(wt +π/ 2) 

Here current leads the supply voltage by an angle π/2 radian. 

Power factor = cos φ 

= cos 90° = 0 

Power Consumed = VI cos φ 

= VI × 0 = 0 

The power consumed by a pure capacitive circuit is zero. 

A.C. Through R-L Series Circuit : → 

The resistance of R-ohm and inductance of L-henry are connected in series across 

the A.C. supply of applied voltage e = Em sin wt --------------------------------- (1) 

V =VR + jVL 

= V 
2 

+V 
2 

∠φ = tan−1⎛  X L  ⎞ 

R L ⎜ ⎟ 

= (IR)2 +(IX L )2 ∠φ = tan−1⎛
⎜ 
 X L  ⎞

⎟ 

 = I R2 + X 
⎝ R ⎠ 

2 

∠φ = tan −
1 ⎛  XL   ⎞ 

L ⎜ 
R 

⎟ 
⎝ R ⎠ 



L 

V = IZ∠φ= tan−1
⎛
⎜ 

XL ⎞⎟ ⎝ R ⎠ 

Where Z = R2 + X 2 

= R + jXL is known as impedance of R-L series Circuit. 

 V   Em sin wt 

I =  = 

Z∠φ Z∠φ 

I = Im sin(wt −φ) 

Here current lags the supply voltage by an angle φ. 

Power Factor :→ It is the cosine of the angle between the voltage and current. 

OR 

It is the ratio of active power to apparent power. 

OR 

It is the ratio of resistance to inpedence . 

Power :→ 

= v.i 

=Vm sin wt.Im sin(wt −φ) 

=VmIm sin wt.sin(wt −φ) 

= VmIm2sin wt.sin(wt −φ) 

= VmIm[cosφ−cos2(wt −φ)] 

2 

Obviously the power consists of two parts. 

1 

(i) a constant part VmIm cosφ which contributes to real power. 

2 

1 

(ii) a pulsating component VmIm cos(2wt −φ) which has a frequency twice 

2 

that of the voltage and current. It does not contribute to actual power since its 

average value over a complete cycle is zero. 

Hence average power consumed 

= VmIm cosφ 
V I 

m 

= 

m 

2. cosφ 

=VI cosφ 

2 



R X 
2 

+  C 

2 

Where V & I represents the r.m.s value. 

A.C. Through R-C Series Circuit : → 

The resistance of ‘R’-ohm and capacitance of ‘C’ farad is connected across the 

A.C. supply of applied voltage 

e = Em sin wt ---------------------------------------------------------------------------------- (1) 
 

V =VR + (− jVC ) 

= IR + (− jIX C ) 

= I(R − jX C ) 

V = IZ 

 

Where Z 

Circuit. 

 

C 

 

C 

= R− jX =is known as impedance of R-C series 

Z = R − jX 

= ⎛  XC  ⎞ 

∠−φ= tan−1⎜ ⎟ 

⎝ R ⎠ 

V = IZ∠−φ 
V 

⇒ I =   

Z∠−φ 

Em sin wt 

=   

Z∠−φ 

E 

sin(wt +φ) 

Z 

⇒ I = Im sin(wt +φ) 

Here current leads the supply voltage by an angle ‘φ’. 

R X 
2 

+ C 

2 



A.C. Through R-L-C Series Circuit : → 

Let a resistance of ‘R’-ohm inductance of ‘L’ henry and a capacitance of ‘C’ farad 

are connected across the A.C. supply in series of applied voltage 
 

e = Em sin wt (1) 
→ → → 

e =VR +VL +VC 

=VR + jVL − jVC 

=VR + j(VL −VC ) 

= IR + j(IX L − IX C ) 

= I[R + j(X L − X C )] 

 

= I R2 + (XL − XC)2  ∠±φ= tan−1⎛⎜  X L − X C ⎞⎟ 

⎝ R ⎠ 

= IZ∠±φ 

Where Z = I R2 + (XL − XC)2 is known as the impedance of R-L-C Series 

Circuit. 

If X L > X C , then the angle is +ve. 

If X L < X C , then the angle is -ve. 

Impedance is defined as the phasor sum of resistance and net reactance e 

= IZ∠±φ 
e Em sin wt 

⇒ I =  IZ∠±φ =  = Im sin(wt ±φ) 

Z∠±φ Z∠±φ 

(1) If X L > X C , then P.f will be lagging. 

(2) If X L < X C , then, P.f will be leading. 



Z = R2 + (XL − XC)2 

(3) If X L = X C , then, the circuit will be resistive one. The p.f. becomes unity 

and the resonance occurs. 

REASONANCE 

It is defined as the resonance in electrical circuit having passive or active 

elements represents a particular state when the current and the voltage in the 

circuit is maximum and minimum with respect to the magnitude of excitation at 

a particular frequency and the impedances being either minimum or maximum 

at unity power factor 

Resonance are classified into two types. 

(1) Series Resonance 

(2) Parallel Resonance 

(1) Series Resonance :- Let a resistance of ‘R’ ohm, inductance of ‘L’ 

henry and capacitance of ‘C’ farad are connected in series across A.C. supply 
 

e = Em sin wt 

The impedance of the circuit 

Z = R + j(X L − X C )] 

 

 

The condition of series resonance: 

The resonance will occur when the reactive part of the line current is zero The 

p.f. becomes unity. 

The net reactance will be zero. 

The current becomes maximum. 

At resonance net reactance is zero 

X L − X C = 0 

⇒ X L = X C 

1 

⇒WoL =   

WoC 



o ⇒W 2LC =1 

⇒Wo2 = ____ 1 

LC 

1 

⇒Wo = 

  1  
⇒ 2πfo = 

 1  

⇒ fo =  2π 

1 1 

Resonant frequency ( fo ) =  .   

2π 

Impedance at Resonance 

Z0 = R 

Current at Resonance 

V 

Io =  

R 

Power factor at resonance 

R R 

p.f . = =  =1 [ Zo = R] 
Zo R 

Resonance Curve :- 
 

 

At low frequency the Xc is greater and the circuit behaves leading and 

at high frequency the XL becomes high and the circuit behaves lagging 

circuit. 
If the resistance will be low the curve will be stiff (peak). 

LC 

LC 

LC 

LC 



0 

• If the resistance will go oh increasing the current goes on decreasing and the 

curve become flat. 

Band Width :→ 

At point ‘A’ the power loss is I 2R. 

The frequency is f0 which is at resonance. 

I02R 

At point ‘B’ the power loss is  . 

2 

The power loss is 50% of the power loss 

at point 

‘A”/ 

 

 

 

 

Hence the frequencies 

corresponding to point ‘B’ is known as half power frequencies f1 & f2. 

f1 = Lower half power frequency 

R 

f1 = f0 −   

4πL 

F2 = Upper half power frequency 

R 

f2 = f0 +   

4πL 

Band width (B.W.) is defined as the difference between upper half power 

frequency ad lower half power frequency. 

R 

B.W. = f2 − f1 =   

2πL 

Selectivity : → 

Selectivity is defined as the ratio of Band width to resonant frequency 

B.W. R R 

Selectivity =     = Selectivity =  

f0 2πL 2πfoL 



Quality Factor (Q-factor) :→ 

It is defined as the ratio of 2π × Maximum energy stored to energy dissipated per 

cycle 
1 

2π× LI 2 Q-factor 
2 

0 

= 2 

 2 

πL( 2I) 
= 2 

I RT πL.2I2 

=  2 

I RT 

πL.2I 2 

= 2 

I RT 

2πL. 

=   

RT 

 

⎡⎢⎣ = 1 I. = f0⎤⎥⎦ 

 
Quality factor is defined as the reciprocal of power factor. 

It is the reciprocal of selectivity. 

Voltage across Inductor. 

Q-factor Or Magnification factor =   

Voltage across resistor 

I0X L 

= 

I0R 

XL 

= 

R 

2πf0L W0L 

= = R R 

2πf L. 

Quality factor = = 
0 R 

I RT 

Q factor = = 
1.  

cosφ 



W L 

Q- factor = = 
0 R 

= 

 

 

 

 

 

 

Voltage across Capacotor. 

Q-factor factor =   

Voltage across resistor 

I0X c 

 

 

 

 

= 

I0R 

XC 

=   

R 

1 1 

= = 

2πf0C 2πf0CR 

2 W0L 1 

Q = × 

R W0CR 

Q
2  1  

R2C 

 

Graphical Method :→ 

(1) Resistance is independent of frequency It represents a straight line. 

(2) Inductive Reactance XL = 2πfL 

Q = 
 1  L 

R C 

Q =
1  

R2C 

1 

Q-factor =   

W0CR 



It is directly proportional to frequency. As the frequency increases , XL increases 

1 

(3) Capacitive Reactance XC = =  

2πfC 
 

It is inversely proportional to frequency. As the frequency increases, XC 

decreases. 

When frequency increases, XL increases and XC decreases from the higher 

value. 

 

At a certain frequency. XL = XC 

That particular frequency is known as Resonant frequency. 

Variation of circuit parameter in series resonance: 



⎝C ⎠ 2 4π f0 L  

R X 
2 

+ L 

2 

R X 
2 

+ L 

2 

R X 
2 

+ L 

2 

2 

L L C 

(2) Parallel Resonance :- Resonance will occur when the reactive part of 

the line current is zero. 

 

 

 

At resonance, 

 
IC = IL sinφ 

⇒ 
 V  

= 
 V  

sinφ 
XC 

 

⇒ 
 V  

= 
 V  

×
 X L  

XC 

⇒ 
 1  

= 
 X L  

 

IC – ILsin φ = 0 

 

 

 

 

 

 
XC 

R2 + XL 

⇒ R2 + X 2 = X .X 

2 1 

⇒ Z == X L.X C =W0L×W 0C 

2 L 

Z =   C 

 

⇒ R2 + XL2 =  L 

C 

2 2 L 

⇒ R + (2πf0L) =  C 

⇒ R2 + 4π2 f02L2 =   L C 

 

⇒ 4π2 f02L2 = __ L − R2 

C 

 

⇒ f02 =  21 2 2 =⎛⎜ L − R2⎞⎟ 



Z2 = R2 − jX C 
 

1 1 R 

⇒ f0 = − 2 

2π LC L 

f0 = Resonant frequency in parallel circuit. 

Current at Resonance = IL cosφ 

V R 

. 

 

= VR  

= 2 2 

R + XL 

VR 

=  2 

Z 

VR V 

= = 

L /C L/ RC 

V 

=   

Dynamic Impedence 

L / RC → Dynamic Impedance of the circuit. or, dynamic impedances is defined as 

the impedance at resonance frequency in parallel circuit. 

Parallel Circuit :→ 

 

The parallel resonance condition: 

When the reactive part of the line current is zero. 

The net reactance is zero. 

The line current will be minimum. 

The power factor will be unity 

Impedance Z1 = R1 + jXL 

R X 
2 

+ L 

2 

R X 
2 

+ L 

2 



1 1 

Admittance Y1 = = 

Z1 R1 + jX L 

(R1 + jX L ) 

=  

(R1 + jX L )(R1 − jX L 
) 

R1 + jXL 

= 2 2 

R1 + XL 

  R1     XL   

Y1 = 2  2 − j  2  2 

R1 + XL R1 + XL 

1 1 

Admittance Y = = 
2 

Z2 R1 + jX C 

(R2 + jX C ) 

=   

(R21 − jX C )(R2 + jX C ) 

R2 + jXL 

= 2 2 

R2 + XC 

R2  XC  

Y = + j 

2 R22 + XC2 R22 + XC2 

 

Total Admittance Admittance ⎛⎜ 1 ⎞⎟ = 1 + 1 

 

 

 

 

R1 + X L R1 + X L 

 
⇒ Y = 2 R1 2 + 2 R 2 2 − 

R1 + X L R2 + X C 

At Resonance, 

 XL   XC  

2 2 − 2 2 = 0 

 

⎝ Z ⎠ Z1 Z2 

R1 + XL R2 + XC 

XC 

⇒ = 

R12 + XL2 R22 + XC2 

 

⇒ X (R 2 + X 2 )= X (R 2 + X 

R2 + X C R2 + X C 

⇒Y =Y1 +Y2 

 R1   X L   R2  

⇒Y = 2 2 − j 2 2 + 2 

 
X 

+ j C 
XL 

2 2 2 

 



1 

j⎛⎜⎜ R12 X+ LX L2 − R22 X+CX C 2 ⎞⎟⎟⎠ 
2 

⎝ 
 

 

 

 

 

 

 

 

 
L 2 C C 1 L 

 

 

⇒ 2πfL⎜⎜⎛⎝R22 + 4π21f 2C2 ⎠⎞⎟⎟= 2π1fC (R12 + 4π2 f 2L2) 

2 L R 2 2πfL2 

⇒ 2πfLR2 + 2 = + 

2πfC 2πfC C 

L R 2 2πfL2 

⇒ 2 − 1 = −2πfLR22 

2πfC 2πfC C 

1 ⎛ L 

⇒ ⎜  − R12 ⎞⎟= 2πfL⎛⎜   L − R22 ⎞⎟ 

2πfC ⎝C ⎠ ⎝C ⎠ 

L 2 

  − R1 L − CR 2 

⇒ 4π2 f 2LC = 
C

L R 2 = L − CR122 

– 2 

C 

1 ⎛ L−CR 2 ⎞ 
 

⇒ 4π2 f 2 = LC ⎜⎜⎝ L−CR122 
⎟
⎟⎠ 

1 ⎛ L−CR 2 ⎞ 

⇒ f 2 = 2 ⎜⎜ L−CR122 ⎟⎠⎟ 

 4π LC ⎝ 

1 ⎛ L−CR 2 ⎞ 

⇒ f = ⎜
⎜
⎝ L−CR12 ⎟⎟ 

 2π LC 2 ⎠ 

) 



1 ⎛ L−CR 2 ⎞ 

⇒ f = 2π ⎜⎜⎝ L2C − LC12R22 ⎟⎟⎠ 

 

f is called Resonant frequency. 

 

Comparison of Series and Parallel Resonant Circuit :→ 

Item Series ckt (R-L-C) Parallel ckt (R– L and 

C) 

 Impedance at Resonance Minimum Maximum 

 Current at Resonance V 

Maximum= R 

V 

 
 

Minimum= (L /CR) 

 Effective Impedance R L 

 
 

CR 

 P.f. at Resonance Unity Unity 

 Resonant Frequency 1 

2π LC 

1 1 R2 

– 2 2π LC 

L 



1 

1 

 It Magnifies Voltage Current 

 Magnification factor WL 

 
 

R 

WL 

 
 

R 

 

 

 

Parallel circuit :→ 

 

 

Z1 = R1 + jX L = R 
2 

+ X ∠φ1 

Z2 = R1 – jXC = R2 
2 

+ X ∠ −φ2 

  V   V  I = = ∠ −φ = I ∠ −φ 

Z1∠φ1 Z1 

V 

1 1 1 

Where __ =VY1 

Z1 

Here Y1 → Admittance of the circuit 

Admittance is defined as the reciprocal of impedence. 

 
v 

2 

2 

L 

C 

1 



I φ 

1 1 1 2 

2 2 2 

I1 =VY1 = 
R jX L 

 V   V  
2 = = ∠ =VY ∠φ = I ∠φ Z φ2 Z 

2∠ − 1 2 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

I =  I 
2 

+I 2 +2I I cos(φ +φ ) 

I = I1∠ −φ1 + I 2∠φ2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The resultant current “I” is the vector sum of the branch currents I1 & I2 

can be found by using parallelogram low of vectors or resolving I2 into their X – 

1 + 

2 2 

1 



max 

and Y- components ( or active and reactive components respectively) and then by 

combining these components. 

 

Sum of active components of I1 and I2 = I1 cos φ1+ I2 cos φ2 

Sum of the reactive components of I1 and I2 = I2 sin φ2 - I1 sin φ1 

 

EXP – 01 : 

A 60Hz voltage of 230 V effective value is impressed on an inductance of 

0.265 H 

(i) Write the time equation for the voltage and the resulting current. Let the 

zero axis of the voltage wave be at t = 0. 

(ii) Show the voltage and current on a phasor diagram. 

(iii) Find the maximum energy stored in the inductance. 

Solution :- 

Vmax = 2V = 2 ×230V 

f = 60Hz, W = 2πf = 2π×60 = 377rad /s.  xl = wl = 

377 × 0.265 = 100Ω . 

(i) The time equation for voltage is V(t) = 230 2 sin377t. 

Imax =Vmax / xl = 230 2 /100. = 2.3 3  φ= 90o (lag). 

Currente quation is. 

i(t) = 2.3 2 sin(377t − π/ 2) 

or = 2.3 2 cos377t 

(ii) Iti 

(iii) or Emax =  LI2 = ×0.265×(2.3 2)2 =1.4J 
 

 

 

 

Example -02 : 

The potential difference measured across a coil is 4.5 v, when it carries a direct 

current of 9 A. The same coil when carries an alternating current of 9A at 25 Hz, 

the potential difference is 24 v. Find the power and the power factor when it is 

supplied by 50 v, 50 Hz supply. 

Solution : 

Let R be the d.c. resistance and L be inductance of the coil. 

R =V / I = 4.5/9 = 0.5Ω 



With a.c. current of 25Hz, z = V/1. 

 = 2.66Ω 

xl = Z 2 − R2 = 2.662 − 0.52 

= 2.62Ω 

xl = 2π×25×L 

xl = 0.0167Ω 

At 50Hz 

xl = 2.62×2 = 5.24Ω 
 

= 5.06 Ω 

I = 50/5.26 = 9.5 A 

P = I2/R = 9.52 × 0.5 = 45 watt. 

Example – 03 : 

A 50- μf capacitor is connected across a 230-v, 50 – Hz supply. Calculate 

(a) The reactance offered by the capacitor. 

(b) The maximum current and 

(c) The r.m.s value of the current drawn by the capacitor. 

Solution : 
1 1 1 

(a) xl = = = −6 = 63.6Ω 

wc 2π fe 2π×50×50×10 

(c) Since 230 v represents the r.m.s value 

Irms = 230/ xl = 230/63.6 = 3.62A 

(b) Im = Ir.m.s × 2 = 3.62× 2 = 5.11A 

Example – 04 : 

In a particular R – L series circuit a voltage of 10v at 50 Hz produces a current 

of 700 mA. What are the values of R and L in the circuit ? Solution : 

(i) 
 

V =1z 

10 = 700×10−3 (R2 +98696L2) 

=10/ 700×10−3 =100/ 7 

R2 +98696L2 =10000/49--------------------- (I) 

Z= R2 +(2π×50L)2 

(R2 + 98696L2) 

Z = 0.52 +5.242 

= R2 + 98696L2 



(ii) In the second case Z= R2 +(2π×75L)2 

10 = 500×10−3 R2 + 222066L2) = 20 

R2 +222066L2) = 20 



CHAPTER-07 

TRANSIENTS 

 
Whenever a network containing energy storage elements such as inductor or capacitor is 
switched from one condition to another,either by change in applied source or change in 
network elements,the response current and voltage change from one state to the other 
state.The time taken to change from an initial steady state to the final steady state is known 
as the transient period.This response is known as transient response or transients.The 
response of the network after it attains a final steady value is independent of time and is 
called the steady‐state response.The complete response of the network is determined with 
the help of a differential equation. 

STEADY STATE AND TRANSIENT RESPONSE 

In a network containing energy storage elements, with change in excitation, the currents 
and voltages in the circuit change from one state to other state. The behaviour of the 
voltage or current when it is changed from one state to another is called the transient state. 
The time taken for the circuit to change from one steady state to another steady state is 
called the transient time. The application of KVL and KCL to circuits containing energy 
storage elements results in differential, rather than algebraic equations. when we consider 
a circuit containing storage elements which are independent of the sources, the response 
depends upon the nature of the circuit and is called natural response. Storage elements 
deliver their energy to the resistances. Hence, the response changes, gets saturated after 
some time,and is referred to as the transient response. When we consider a source acting 
on a circuit, the response depends on the nature of the source or sources.This response is 
called forced response. In other words,the complete response of a circuit consists of two 
parts; the forced response and the transient response. When we consider a differential 
equation, the complete solution consists of two parts: the complementary function and the 
particular solution. The complementary function dies out after short interval, and is referred 
to as the transient response or source free response. The particular solution is the steady 
state response, or the forced response. The first step in finding the complete solution of a 
circuit is to form a differential equation for the circuit. By obtaining the differential 
equation, several methods can be used to find out the complete solution. 

DC RESPONSE OF AN R‐L CIRCUIT 

 

Consider a circuit consisting of a resistance and inductance as shown in figure.The inductor in 
the circuit is initially uncharged and is in series with the resistor.When the switch S is closed 
,we can find the complete solution for the current.Application of kirchoff’s voltage law to the 
circuit results in the following differential equation. 



 



+ i = 

Figure 1.1 

V = Ri + L  ……………………………………………………………..1.1 

Or .......................................................................................... 1.2 

In the above equation , the current I is the solution to be found and V is the applied constant 

voltage. The voltage V is applied to the circuit only when the switch S is closed. The above equation 

is a linear differential equation of first order.comparing it with a non‐homogenious differential 

equation 

 + P x = K ..................................................................... 1.3 

whose solution is 

X =  dt +c  ……………………………………………. 1.4 

 
Where c is an arbitrary constant. In a similar way , we can write the current equation as 
 

i = c  dt 
 

Hence , i  = c + .......................................... 1.5 

To determine the value of c in equation c , we use the initial conditions .In the circuit shown in 

Fig.1.1, the switch s is closed at t=0.at t=0‐,i.e. just before closing the switch s , the current in the 

inductor is zero. Since the inductor does not allow sudden changes in currents, at t=o+ just after 

the switch is closed,the current remains zero. 

Thus at t = 0, i =0 

Substituting the above condition in equation c , we have 

0 = c +  

Substituting the value of c in equation c , we get 
 
 
 

 

 

 

 

 ) ………………………………………………1.6 

i =  ‐ 

i = 

 
i = 

(1‐ 

 
(1‐ 

) 

) (where 

i = (1‐ ) ( where 

 



 

 
Figure 1.2 

Equation d consists of two parts, the steady state part V/R) and the transient part  . 
 
When switch S is closed , the response reaches a steady state value after a time interval as 

shown in figure 1.2. 

Here the transition period is defined as the time taken for the current to reach its final 
or stedy state value from its initial value.In the transient part of the solution, the 
quantity L/R is important in describing the curve since L/R is the time period required 
for the current to reach its initial value of zero to the final value  V/R. The time 

constant of a function  is the time at which the exponent of e is unity, where e 
is the base of the natural logarithms.The term L/R is called the time constant and is 
denoted by τ . 

 

So, τ = sec 
 

 
Hence, the transient part of the solution is 

i =  

At one Time constant , the transient term reaches 36.8 percent of its initial value. 

i(τ) = ‐  = ‐0.368  

Similarly, 

i(2τ) = ‐   = ‐0.135  

i(3τ) = ‐   = ‐ 
 

0.0498 



 

i(5τ) = ‐ = ‐  

0.0067 

After 5 TC the transient part reaches more than 99 percent of its final value. 

In figure A we can find out the voltages and powers across each element by using the current. 

Voltage across the resistor is 

 =R i = R (1‐ ) 

Hence ,  =V (1‐  ) 
 

 
Similarly, the voltage across the inductance is 

 

The responses are shown in Figure 1.3. 
 

 

 
Figure 1.3 

 

 
Power in the resistor is 
 

 

=  (1‐ ) + 

Power in the inductor is 



 

The responses are shown in figure 1.4 . 

 

Figure 1.4 
 
 
 

 
Problem : 1.1 
 

Figure 1.5 

A series R‐L circuit with R = 30Ω and L = 15 H has a constant voltage V = 50 V applied at t=0 as 

shown in Fig. 1.5 . determine the current i, the voltage across resistor and across inductor. 

Solution : 

By applying Kirchoff’s voltage Law, we get 
 

15 +30i =60 
 

 

 +2i=4 

 
The general solution for a linear differential equation is 

i=c  + dt 



i=c 

where P=2,K=4 

putting the values 

i=c + dt 

 
 + 2 

At t=0, the switch s is closed. 

Since the inductor never allows sudden change in currents. At t=  the current in the circuit is 

zero. Therefore at t= , i =0 

 0=c + 2 

 
 c =‐ 2 

 
Substituting the value of c in the current equation, we have 

i=2(1‐ ) A voltage across resistor () =iR =2(1‐ ) x 
 

30=60(1‐ ) v  

 
voltage across inductor ( 
 
 
 

 
DC RESPONSE OF AN R‐C CIRCUIT 

Consider a circuit consisting of a resistance and capacitance as shown in figure.The capacitor in the 

circuit is initially uncharged and is in series with the resistor.When the switch S is closed at t=0 , we 

can find the complete solution for the current.Application of kirchoff’s voltage law to the circuit 

results in the following differential equation. 
 

 
Figure 1.6 

V = Ri +  ……………………………………………………………..1.7 

By differentiating the above equation, we get 



The term RC is called the time constant and is denoted by τ .  

0 = R  + i ................................................... 1.8 

Or 

 +  i =0 ................................................1.9 

Equation c is a linear differential equation with only the complementary function. The particular 

solution for the above equation is zero. The solution for this type of differential equation is 

i = c  …………………………………..1.10 
 

 
To determine the value of c in equation c , we use the initial conditions .In the circuit shown in 

Fig. the switch s is closed at t=0. Since the capacitor does not allow sudden changes in voltage, it 

will act as a short circuit at t=o+ just after the switch is closed. 

So the current in the circuit at t = 0+ is  

Thus at t = 0, the current i = 
 

 
Substituting the above condition in equation c , we have 

 = c 

Substituting the value of c in equation c , we get 

 

i =  ………………………………………………1.11 

 

Figure 1.7 
 

 
When switch S is closed , the response decays as shown in figurre. 



=  

So, τ = RC sec 

After 5 TC the curve reaches 99 percent of its final value. 

In figure A we can find out the voltage across each element by using the current equation. 

Voltage across the resistor is 

 

 =R i = R  

 
Hence ,  =V 

Similarly, voltage across the capacitor is 

 =  

=  

 
= ‐ + c 

 

= ‐ V  + c 

At t=0,voltage across capacitor is zero 

So, c = V 

And 

 = V  

The responses are shown in Figure1.8. 

 

Figure 1.8 

Power in the resistor is 



Power in the capacitor is 

 
 i = V (1‐ 

 

=  ( ‐ ) 

The responses are shown in figure 1.9. 

 

 
Figure 1.9 

Problem : 1.2 

A series R‐C circuit with R = 10Ω and C =0.1 F has a constant voltage V = 20 V applied at t=0 as 

shown in Fig. determine the current i, the voltage across resistor and across capacitor. 
 

 

Figure 1.10 

Solution : 

By applying Kirchoff’s voltage Law, we get 
 

10i + =20 

 
Differentiating w.r.t.  t we get 
 

10 + = 0 
 



 + i= 0 

 
The solution for above equation is 

i=c 

At t=0, the switch s is closed. 

Since the capacitor never allows sudden change in voltages. At t=  the current in the circuit is 

i = V/R=20/10 =2 A 

. Therefore at t= 0, i =2 A 

 the current equation is i=2  voltage across 

resistor ( ) =iR =2  x 10=20  v 

 
 

voltage across capacitor ( ) = V = 20(1‐ ) V 
 
 
 
 
 
DC RESPONSE OF AN R‐L‐C CIRCUIT 

Consider a circuit consisting of a resistance, inductance and capacitance as shown in figure.The 

capacitor and inductor in the circuit is initially uncharged and are in series with the resistor.When 

the switch S is closed at t=0 , we can find the complete solution for the current.Application of 

kirchoff’s voltage law to the circuit results in the following differential equation. 

 

 
Figure 1.11 

 
 

V = Ri + L  + ……………………………………………………………..1.12 

By differentiating the above equation, we get 
 

 

0 = R 
+ 

 i = ............................................................... 1.13 

Or 



 i =0 ............................................................ 1.14 

The above equation c is a second order linear differential equation with only the complementary 

function. The particular solution for the above equation is zero. The characteristics equation for this 

type of differential equation is 

= 0 …………………………………………………………….1.15 

 
The roots of equation 1.15 are 

 = ‐  

By assuming  

 

Here  may be positive,negative or zero . 

Case I :   > 

Then , the roots are Real and Unequal and give an over damped Response as shown in figure 

1.12. 

The solution for the above equation is : i =  
 

Figure 1.12 

 
Case II : 

Then , the roots are Complex Conjugate, and give an under‐damped Response as shown in 

figure 1.13. 

+ D + 



 

Figure 1.13 

The solution for the above equation is : i =  

 

Case III : 

Then , the roots are Equal and give an Critically‐damped Response as shown in figure 1.14. 
 

 
Figure 1.14 

The solution for the above equation is : i =  

Problem : 1.3 

A series R‐L‐C circuit with R = 20Ω , L = 0.05H and C = 20 μF has a constant voltage V = 100 V 

applied at t=0 as shown in Fig. determine the transient current i . 
 

Figure 1.15 
 

 
Solution : 

By applying Kirchoff’s voltage Law, we get 



100=30i 
0.05 

Differentiating w.r.t.  t we get 
 

 +20 + 
i =0 

 

 

 
 + 400D + i = 0 

 
The roots of equation are 

i =0 

 = ‐  
 

= ‐200  

 
 ‐200+j979.8 

 ‐200‐j979.8 

Therefore the current 

i =  

i =  A 
 
 
 

 
At t=0, the switch s is closed. 

Since the inductor never allows sudden change in currents. At t=  the current in the circuit is 

zero. Therefore at t= , i =0 

 i =0 =(1)  
 

= 0 and i =  A 
 
Differentiating w.r.t.  t we get 
 

At t=0, the voltage across the inductor is 100 V 

 =100 or  = 2000 

At t=0,  = 2000=  



 =2.04 
 
 

 
The current equation is 

i= 

 
 
 

 

ANALYSIS OF CIRCUITS USING LAPLACE TRANSFORM 

TECHNIQUE 

The Laplace transform is a powerful Analytical Technique that is widely used to study the 

behavior of Linear,Lumped parameter circuits. Laplace Transform converts a time domain 

function f(t) to a frequency domain function F(s) and also Inverse Laplace transformation 

converts the frequency domain function F(s) back to a time domain function f(t). 

L { f(t)} = F(s) =  f(t) dt ............................................................................. LT 1 
 

 { F(s)} = f(t) = ds .................................................................. LT 2 
 
DC RESPONSE OF AN R‐L CIRCUIT (LT Method) 

Let us determine the solution i of the first order differential equation given by equation A which 

is for the DC response of a R‐L Circuit under the zero initial condition i.e. current is zero, i=0 at 

t=  and hence i=0 at t=  in the circuit in figure A by the property of Inductance not allowing 

the current to change as switch is closed at t=0. 

 

 
Figure LT 1.1 

V = Ri + L  ……………………………………………………………..LT 1.1 

Taking the Laplace Transform of bothe sides we get, 
 

=R I(s) + L [ s I(s) –I(0) ] .................................................LT 1.2 
 



 =R I(s) + L [ s I(s) ] ( I(0) =0 : zero initial current ) 
 

= I(s)[R +L s] 

I(s) = 

 
 
 
… ....................................... LT 1.3 

Taking the Laplace Inverse Transform of both sides we get, 

I(s)} =  

i(t) =  ( Dividing the numerator and denominator by L ) putting 

 we get 

i(t) = 
  =  (

} 

i(t) = 
 (

} ( again putting back the value of  

i(t) =  ) (where  

i(t)=  ) .................................................. LT 1.4 

It can be observed that solution for i(t) as obtained by Laplace Transform technique is same as 

that obtained by standard differential method . 

DC RESPONSE OF AN R‐C CIRCUIT(L.T.Method) 

Similarly , 

Let us determine the solution i of the first order differential equation given by equation A which 

is for the DC response of a R‐C Circuit under the zero initial condition i.e. voltage across 

capacitor is zero, =0 at t= and hence =0 at t= in the circuit in figure A by 

the property of capacitance not allowing the voltage across it to change as switch is closed at 

t=0. 
 

 
Figure LT 1.2 

V = Ri +  ……………………………………………………………..LT 1.5 



Taking the Laplace Transform of both sides we get, 
 

=R I(s) + [   +I (0) ] ....................................LT 1.6 
 

 

 =R I(s) + [ ] ( I(0) =0 : zero initial charge ) 
 

 = I(s)[R + 

I(s) =  

] = I(s)[ 

 
] = 

] 

 
[ ................................................. LT 1.7 

Taking the Laplace Inverse Transform of both sides we get, 

I(s)} =  

i(t) =  ( Dividing the numerator and denominator by RC ) 

putting  we get 

i(t) =  

 

i(t) =  ( putting back the value of  

i(t) =  (where  ………………………………..LT 1.8 

i(t)=  ) ( where  RC ) 
 
It can be observed that solution for i(t) as obtained by Laplace Transform technique in q is 

same as that obtained by standard differential method in d. 

DC RESPONSE OF AN R‐L‐C CIRCUIT ( L.T. Method) 

 

 
Figure LT 1.3 

Similarly , 



Let us determine the solution i of the first order differential equation given by equation A which 

is for the DC response of a R‐L‐C Circuit under the zero initial condition i.e. the switch s is 

closed at t=0.at t=0‐,i.e. just before closing the switch s , the current in the inductor is zero. 

Since the inductor does not allow sudden changes in currents, at t=o+ just after the switch is 

closed,the current remains zero. also the voltage across capacitor is zero i.e.  =0 at t=  and 

hence  =0 at t=  in the circuit in figure by the property of capacitance not allowing the 

voltage across it  to suddenly change as switch is closed at t=0. 

 
V = Ri + L .......................................................... LT 1.9 

Taking the Laplace Transform of both sides we get, 

+I (0) ] .................................... LT 1.10 
 

 =R I(s) +  [  ] ( 

charge ) 

 = I(s)[R +L  ] = I(s)[  ] 

& I(0) =0 : zero initial 

 
 

I(s) =  [ ] =
 ………………………………..LT 1.11 

Taking the Laplace Inverse Transform of both sides we get, 

I(s)} = 

 

i(t) = 

 

i(t) = 
 

 

 = 
 

i(t)  
= 

( Dividing the numerator and denominator by LC ) 
 
 
 
 

 
putting we get 

 

where, 

where, 

 
By partial Fraction expansion , of I(s) , 

I(s) = 
 +  

=R I(s) ++ L [ s I(s) –I(0) ]+ [ 



+ for t 

A =  s=  

 

 
= 

B = 

 
= 
 
 
 
= 

 

 

 s=  
 
 

 = ‐  

 (
 

I(s) 

 
Taking the Inverse Laplace Transform 

i(t) =   +  

Where and are constants to be determined and and aren the roots of the 

equation. 

Now depending upon the values of  and  , we have three cases of the response. 

CASE I : When the roots are Real and Unequal, it gives an over‐damped response. 

 ; In this case, the solution is given by 

i(t) =  +  )..................................... LT 1.12 
 

or i(t) =   +  for t  0 

CASE II : When the roots are Real and Equal, it gives an Critically‐damped response. 
 
 

 
 
 

 
i(t) = 

= 
or  ; In this case, the solution is given by 

or 

( +  ) for t  0 .................................... LT 1.13 

CASE III : When the roots are Complex Conjugate, it gives an under‐damped response. 

 
or  ; In this case, the solution is given by 

i(t) = 0 

 

=   where, 
 

 =  = j  Let where j =  and  =  



Hence , i(t) =   +  ) 
 
 

 

i(t) = 

i(t) =   

i(t) =   ………………………………..LT 1.14 
 

 
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,xxxxxxxxxxxxxxxxx,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
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CHAPTER 8 

 
TWO-PORT NETWORKS 

 

One-Port 

Network 

 

 

 

+i1 v 
- 

 

a) One port network is a two terminal electrical network in which, current 
enters through one terminal and leaves through another terminal. Resistors, 
inductors and capacitors are the examples of one port network because each 
one has two terminals. One port network representation is shown in the 
following figure. 

b) A pair of terminals at which a signal (voltage or current) may enter or leave is 
called a port. 

c) A network having only one such pair of terminals is called a one-port network. 

d) No connections may be made to any other nodes internal to the network. 

e) By KCL, we therefore havei1=i1 

 

+ 

v 
 

 

 
 two port network is a pair of two terminal electrical network in which, current 

enters through one terminal and leaves through another terminal of each port. Two 

port network representation is shown in the following figure.Type equation here.

 Two-port networks are used to describe the relationship between a pair of 

terminals

 The analysis methods we will discuss require the following conditions be 
met

1. Linearity 

2. No independent sources inside the network 

3. No stored energy inside the network (zero initial conditions) 

4. i1 = i1 and i2 = i 

 

 
Two-Port 

Network 

- 

 

 

 
 
 
 

 
1 

 
 

- 
i'1 

 i2 

+ 

v 

i'2  
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Two Port Network Parameters 
There are various parameters needed to analyze a two port 

network. For examples, Z parameters, Y parameters, h 

parameters, g parameters, ABCD parameters etc. 

Let us discuss these network parameters one by one to gain a 

better understanding of their application and uses. 

Impedance Parameters 

 Suppose the currents and voltages can be measured.

 Alternatively, if the circuit in the box is known,V1 and V2 can be calculated 

based on circuit analysis.

 Relationship can be written in terms of the impedance parameters.

 We can also calculate the impedance parameters after making two sets of 

measurements.

 

V1=z11I1+z12I2 

 

V2=z21I1+z22I2 

If the right port is an open circuit (I2=0), then we can easily solve for two of 

the impedance parameters: Similarly by open circuiting left hand port (I1=0 ) we can solve 

for the other two parameters. 

2  

 

 

 

 

Impedance Parameter Equivalent 

https://www.electrical4u.com/impedance-parameter-or-z-parameter/
https://www.electrical4u.com/impedance-parameter-or-z-parameter/
https://www.electrical4u.com/impedance-parameter-or-z-parameter/
https://www.electrical4u.com/admittance-parameters-or-y-parameters/
https://www.electrical4u.com/admittance-parameters-or-y-parameters/
https://www.electrical4u.com/admittance-parameters-or-y-parameters/
https://www.electrical4u.com/hybrid-parameters-or-h-parameters/
https://www.electrical4u.com/hybrid-parameters-or-h-parameters/
https://www.electrical4u.com/hybrid-parameters-or-h-parameters/
https://www.electrical4u.com/abcd-parameters-of-transmission-line/
https://www.electrical4u.com/abcd-parameters-of-transmission-line/
https://www.electrical4u.com/abcd-parameters-of-transmission-line/
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+ 
 

1 

 
 

 
 
 
 
 
 
 

 

V1=z11I1+z12I2 

V2=z21I1+z22I2 

 

 

• Once we know what the impedance parameters are, we can model 

the behavior of the two-port with an equivalent circuit. 

• Notice the similarity to Th´evenin and Norton equivalents 

Admittance Parameters 

 

+ 

v 2 

 

 

 

I1=y11V1+y12V2 

I2=y21V1+y22V2 

Y11 = input admittance = 
I1 V2 0 

V1 

I1(s) I2(s) 

z11 z22 

+ 

V (s) 

- 

z12I2 z21I 1  V2(s) 

- 

 

 

Two-Port 

Network 

- 

 

 

 
 

 

 

 

 

1 

 

 

- 
i'1 

 i2 

+ 

v 

 

i'2  
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Y21 = forward transfer admittance = 
I2 V2 0 

V1 

 

 

 

Y22 = output admittance = 
I1 V1 0 

V2 

 

 

 

Y12 = reverse transfer admittance = 
I1 V1 0 

V2 

Hybrid Parameters 
 

V1=h11I1+h12V2 

I2=h21I1+h22V2 

 

11 = input impedance = 

h 

I1 

V1 V2 0 

 

 

 

h21 = forward current ratio = 
I2 V2 0 

I1 

 

 

 

 

 

h12 = reverse voltage ratio = 
V1 I1 0 

V2 

 

h22 = output admittance = 

Example: 

I1 0 

V2 

Given the following circuit. Determine the Z parameters. 

I2 
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Z11 = 8 + 20||30 = 20 

 

Z22 = 20||30 = 12  

V1 

Z12 

I 
2 

 

V  20xI2 x20 8xI Therefore z 12 
8xI

2 8 Ω = z 

1 2 21 20 30 I2 

 

 

The Z parameter equations can be expressed in matrix form as follows. 

 
 

I 
 

Example: 

Given the following circuit. Determine the Y parameters. 
 
 
 

 

 
8 10 

 

+ + 

V1 20 20 V2 

_ _ 

I1 0 

V1 

V 

20 

8 12 

8 I1 

s + 

V 

_ 
 

V1 

V 

2 

z 
11 z12 

z z 

21 22 

I1 

I 

2 

2 2 

+ V1 

_ 
1 

s 
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I1 

1 
 I2 

 

 

2 

 
1 

 

 

 

 

 

 

 

 

 

 

I2 

To find y11 

 

 

 

V1 I1 ( 2 1 s ) I1 2s 

 

I I 

So y11 V1 y11 V 1 

1 1 

 

 

V2 0 

 

0.5 

To find y and y we reverse things and short V 
12 21 1 

 

 

I2 

y21 V2 0 

V1 

 

 

V 2I 1 
2 

1 

s 

2 
s 

I = y V + y V 
1 11  1 12  2 

I = y V + y V 
2 21  1 22  2 

 

I1 

 

1 

 

 

+ 

V1 

_ 

1 

s 

+ 
s 

V2 

_ 

1 

2 
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I2 

y21  = 0.5 S 

V1 

 

 

 

 

 

 

 

y 
I1 

V 0 
12 

V 
1 

2 

I1 

 

2 1 12 V 2 

 

1 

 
22 

 

s 
2s 1 y I2 V 0 

 

 

22 V2 1 2 2 (s 2) 22 s 

Problem 1 

V I 

V 2I y 0.5s 

y 0.5 

y 0.5 



81  

 



82  

 
 

 

Problem 2 
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Problem 3 
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Problem 4 
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CHAPTER 9 

 
LOW PASS FILTER INTRODUCTION 

Basically, an electrical filter is a circuit that can be designed to modify, 

reshape or reject all unwanted frequencies of an electrical signal and accept or pass only 
those signals wanted by the circuit’s designer. In other words they “filter-out” unwanted 

signals and an ideal filter will separate and pass sinusoidal input signals based upon their 
frequency. 

 
In low frequency applications (up to 100kHz), passive filters are generally 

constructed using simple RC(Resistor-Capacitor) networks, while higher frequency 
filters (above 100kHz) are usually made from RLC (Resistor-Inductor-Capacitor) 
components. 

Passive Filters are made up of passive components such as resistors, 
capacitors and inductors and have no amplifying elements (transistors, op-amps, etc) so 
have no signal gain, therefore their output level is always less than the input. 

Filters are so named according to the frequency range of signals that they 
allow to pass through them, while blocking or “attenuating” the rest. The most commonly 
used filter designs are the: 

• 1. The Low Pass Filter – the low pass filter only allows low frequency signals from 

0Hz to its cut-off frequency, ƒc point to pass while blocking those any higher. 

• 2. The High Pass Filter – the high pass filter only allows high frequency signals from 

its cut-off frequency, ƒc point and higher to infinity to pass through while blocking 

those any lower. 

• 3. The Band Pass Filter – the band pass filter allows signals falling within a certain 

frequency band setup between two points to pass through while blocking both the 

lower and higher frequencies either side of this frequency band. 

• 4 Band Stop Filter - It is so called band-elimination, band-reject, or notch filters; this 

kind of filter passes all frequencies above and below a particular range set by the 

component values. 

Simple First-order passive filters (1st order) can be made by connecting 
together a single resistor and a single capacitor in series across an input signal, (Vin) with 
the output of the filter, (Vout ) taken from the junction of these two components. 
Depending on which way around we connect the resistor and the capacitor with regards 
to the output signal determines the type of filter construction resulting in either a Low 
Pass Filter or a High Pass Filter. 

As the function of any filter is to allow signals of a given band of 

frequencies to pass unaltered while attenuating or weakening all others those are not 
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wanted, we can define the amplitude response characteristics of an ideal filter by using 
an ideal frequency response curve of the four basic filter types as shown. 

 
IDEAL FILTER RESPONSE CURVES 

 

A Low Pass Filter can be a combination of capacitance, inductance or 
resistance intended to produce high attenuation above a specified frequency and little or 
no attenuation below that frequency. The frequency at which the transition occurs is called 
the “cutoff” frequency. The simplest low pass filters consist of a resistor and capacitor but 
more sophisticated low pass filters have a combination of series inductors and parallel 
capacitors. In this tutorial we will look at the simplest type, a passive two component RC 
low pass filter. 

 
THE LOW PASS FILTER 

A simple passive RC Low Pass Filter or LPF, can be easily made by 
connecting together in series a single Resistor with a single Capacitor as shown below. In 
this type of filter arrangement the input signal (Vin) is applied to the series combination 
(both the Resistor and Capacitor together) but the output signal (Vout ) is taken across 
the capacitor only. This type of filter is known generally as a “first-order filter” or “one- 
pole filter”, why first-order or single-pole?, because it has only “one” reactive component, 
the capacitor, in the circuit. 

 
RC LOW PASS FILTER CIRCUIT 

As    mentioned 
previously  in   the Capacitive 
Reactance tutorial, the reactance of a 
capacitor  varies  inversely  with 

frequency, while the value of the 
resistor remains constant as  the 
frequency changes. At low frequencies 
the capacitive reactance, (Xc) of the 
capacitor will be very large compared 

to the resistive value of the resistor, R and as a result the voltage across the capacitor, Vc 
will also be large while the voltage drop across the resistor, Vr will be much lower. At high 
frequencies the reverse is true with Vc being small and Vr being large. 

While the circuit above is that of an RC Low Pass Filter circuit, it can also 
be classed as a frequency variable potential divider circuit similar to the one we looked 
at in the Resistors tutorial. In that tutorial we used the following equation to calculate the 
output voltage for two single resistors connected in series. 
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We also know that the capacitive reactance of a capacitor in an AC circuit 

is given as: 
 

 

 

 
Opposition to current flow in an AC circuit is called impedance, 

symbol Z and for a series circuit consisting of a single resistor in series with a single 
capacitor, the circuit impedance is calculated as: 

 

 

 
Then by substituting our equation for impedance above into the resistive 

potential divider equation gives us: 

 
RC POTENTIAL DIVIDER EQUATION 

 

 

 
So, by using the potential divider equation of two resistors in series and 

substituting for impedance we can calculate the output voltage of an RC Filter for any 
given frequency. 

 
LOW PASS FILTER EXAMPLE 

A Low Pass Filter circuit consisting of a resistor of 4k7Ω in series with a 

capacitor of 47nF is connected across a 10v sinusoidal supply. Calculate the output 
voltage (Vout ) at a frequency of 100Hz and again at frequency of 10,000Hz or 10kHz. 
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Voltage Output at a Frequency of 100Hz. 
 

 

 
 

 

 

 
Voltage Output at a Frequency of 10,000Hz (10kHz). 

 

 

 
 

 

FREQUENCY RESPONSE 

We can see from the results above that as the frequency applied to the RC network 
increases from 100Hz to 10 kHz, the voltage dropped across the capacitor and therefore 
the output voltage (Vout) from the circuit decreases from 9.9v to 0.718v. 

By plotting the networks output voltage against different values of input frequency, the 
Frequency Response Curve or Bode Plot function of the low pass filter circuit can be 
found, as shown below. 

Frequency Response of a 1st-order Low Pass Filter 
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The Bode Plot shows the Frequency Response of the filter to be nearly flat 

for low frequencies and the entire input signal is passed directly to the output, resulting 
in a gain of nearly 1, called unity, until it reaches its Cut-off Frequency point (ƒc). This is 
because the reactance of the capacitor is high at low frequencies and blocks any current 
flow through the capacitor. 

After this cut-off frequency point the response of the circuit decreases to 
zero at a slope of -20dB/ Decade or (-6dB/Octave) “roll-off”. Note that the angle of the 
slope, this -20dB/ Decade roll-off will always be the same for any RC combination. 

Any high frequency signals applied to the low pass filter circuit above this 
cut-off frequency point will become greatly attenuated, that is they rapidly decrease. This 
happens because at very high frequencies the reactance of the capacitor becomes so low 
that it gives the effect of a short circuit condition on the output terminals resulting in zero 
output. 

Then by carefully selecting the correct resistor-capacitor combination, we 
can create a RC circuit that allows a range of frequencies below a certain value to pass 
through the circuit unaffected while any frequencies applied to the circuit above this cut- 
off point to be attenuated, creating what is commonly called a Low Pass Filter. 

For this type of “Low Pass Filter” circuit, all the frequencies below this 

cut-off, ƒc point that are unaltered with little or no attenuation and are said to be in the 
filters Pass band zone. This pass band zone also represents the Bandwidth of the filter. 
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Any signal frequencies above this point cut-off point are generally said to be in the filters 
Stop band zone and they will be greatly attenuated. 

This “Cut-off”, “Corner” or “Breakpoint” frequency is defined as being the 
frequency point where the capacitive reactance and resistance are equal, R = Xc = 4k7Ω. 
When this occurs the output signal is attenuated to 70.7% of the input signal value or - 
3dB (20 log (Vout/Vin)) of the input. Although R = Xc, the output is not half of the input 
signal. This is because it is equal to the vector sum of the two and is therefore 0.707 of the 
input. 

As the filter contains a capacitor, the Phase Angle (Φ) of the output 
signal LAGS behind that of the input and at the -3dB cut-off frequency (ƒc) and is - 45o out 
of phase. This is due to the time taken to charge the plates of the capacitor as the input 
voltage changes, resulting in the output voltage (the voltage across the capacitor) 
“lagging” behind that of the input signal. The higher the input frequency applied to the 
filter the more the capacitor lags and the circuit becomes more and more “out of phase”. 

The cut-off frequency point and phase shift angle can be found by using 
the following equation: 

 
CUT-OFF FREQUENCY AND PHASE SHIFT 

 
 

 
 

 

 

 
Then for our simple example of a “Low Pass Filter” circuit above, the cut- 

off frequency (ƒc) is given as720Hz with an output voltage of 70.7% of the input voltage 
value and a phase shift angle of -45o. 

 
HIGH PASS FILTERS 

A High Pass Filter or HPF, is the exact opposite to that of the previously 
seen Low Pass filter circuit, as now the two components have been interchanged with the 
output signal ( Vout ) being taken from across the resistor as shown. 

 
Where as the low pass filter only allowed signals to pass below its cut-off 

frequency point, ƒc, the passive high pass filter circuit as its name implies, only passes 
signals above the selected cut-off point, ƒc eliminating any low frequency signals from the 
waveform. Consider the circuit below. 

 
THE HIGH PASS FILTER CIRCUIT 
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In this circuit arrangement, the reactance of the capacitor is very high at low frequencies 
so the capacitor acts like an open circuit and blocks any input signals at Vin until the cut- 
off frequency point (ƒc) is reached. Above this cut-off frequency point the reactance of the 
capacitor has reduced sufficiently as to now act more like a short circuit allowing the 
entire input signal to pass directly to the output as shown below in the High Pass 
Frequency Response Curve. 

 
FREQUENCY RESPONSE OF A 1ST ORDER HIGH PASS FILTER. 

 

 

 
 
 
 
 
 
 
 
 
 

 
The Bode Plot or Frequency Response Curve above for a High Pass filter is 

the exact opposite to that of a low pass filter. Here the signal is attenuated or damped at 
low frequencies with the output increasing at +20dB/Decade (6dB/Octave) until the 
frequency reaches the cut-off point ( ƒc ) where again R = Xc. It has a response curve that 
extends down from infinity to the cut-off frequency, where the output voltage amplitude 
is 1/√2 = 70.7% of the input signal value or -3dB (20 log (Vout/Vin)) of the input value. 
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Also we can see that the phase angle (Φ) of the output signal LEADS that 
of the input and is equal to+45o at frequency ƒc. The frequency response curve for a high 
pass filter implies that the filter can pass all signals out to infinity. However in practice, 
the high pass filter response does not extend to infinity but is limited by the electrical 
characteristics of the components used. 

The cut-off frequency point for a first order high pass filter can be found 
using the same equation as that of the low pass filter, but the equation for the phase shift 
is modified slightly to account for the positive phase angle as shown below. 

 
CUT-OFF FREQUENCY AND PHASE SHIFT 

 
 
 
 
 
 
 
 

 

 
The circuit gain, Av which is given as Vout/Vin (magnitude) and is calculated as: 

 

 
 

 

 

 

 
HIGH PASS FILTER EXAMPLE. 

Calculate the cut-off or “breakpoint” frequency ( ƒc ) for a simple high 
pass filter consisting of an82pF capacitor connected in series with a 240kΩ resistor. 

 

BAND PASS FILTERS 

The cut-off frequency or ƒc point in a simple RC passive filter can be 

accurately controlled using just a single resistor in series with a non-polarized capacitor, 
and depending upon which way around they are connected either a low pass or a high 

pass filter is obtained. 
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One simple use for these types of Passive Filters is in audio amplifier 
applications or circuits such as in loudspeaker crossover filters or pre-amplifier tone 
controls. Sometimes it is necessary to only pass a certain range of frequencies that do not 
begin at 0Hz, (DC) or end at some high frequency point but are within a certain frequency 
band, either narrow or wide. 

By connecting or “cascading” together a single Low Pass Filter circuit with 
a High Pass Filter circuit, we can produce another type of passive RC filter that passes a 
selected range or “band” of frequencies that can be either narrow or wide while 
attenuating all those outside of this range. This new type of passive filter arrangement 
produces a frequency selective filter known commonly as a Band Pass Filter or BPF for 
short. 

 
BAND PASS FILTER CIRCUIT 

 

 
Unlike a low pass filter that only pass signals of a low frequency range or 

a high pass filter which pass signals of a higher frequency range, a Band Pass Filters passes 
signals within a certain “band” or “spread” of frequencies without distorting the input 
signal or introducing extra noise. This band of frequencies can be any width and is 
commonly known as the filters Bandwidth. 

Bandwidth is commonly defined as the frequency range that exists 
between two specified frequency cut-off points ( ƒc ), that are 3dB below the maximum 
centre or resonant peak while attenuating or weakening the others outside of these two 
points. 

Then for widely spread frequencies, we can simply define the term 
“bandwidth”, BW as being the difference between the lower cut-off frequency (ƒcLOWER ) 
and the higher cut-off frequency ( ƒcHIGHER ) points. In other words, BW = ƒH – ƒL. Clearly for 
a pass band filter to function correctly, the cut-off frequency of the low pass filter must be 
higher than the cut-off frequency for the high pass filter. 

The “ideal” Band Pass Filter can also be used to isolate or filter out certain 
frequencies that lie within a particular band of frequencies, for example, noise 
cancellation. Band pass filters are known generally as second-order filters, (two-pole) 
because they have “two” reactive component, the capacitors, within their circuit design. 
One capacitor in the low pass circuit and another capacitor in the high pass circuit. 

 
Frequency Response of a 2nd Order Band Pass Filter. 
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The Bode Plot or frequency response curve above shows the 

characteristics of the band pass filter. Here the signal is attenuated at low frequencies 
with the output increasing at a slope of +20dB/Decade (6dB/Octave) until the frequency 
reaches the “lower cut-off” point ƒL. At this frequency the output voltage is again 1/√2 = 
70.7% of the input signal value or -3dB (20 log (Vout/Vin)) of the input. 

The output continues at maximum gain until it reaches the “upper cut-off” 
point ƒH where the output decreases at a rate of -20dB/Decade (6dB/Octave) attenuating 
any high frequency signals. The point of maximum output gain is generally the geometric 
mean of the two -3dB value between the lower and upper cut-off points and is called the 
“Centre Frequency” or “Resonant Peak” value ƒr. This geometric mean value is calculated 
as being ƒr 2 = ƒ(UPPER) x ƒ(LOWER). 

A band pass filter is regarded as a second-order (two-pole) type filter 
because it has “two” reactive components within its circuit structure, then the phase 
angle will be twice that of the previously seen first-order filters, i.e., 180o. The phase 
angle of the output signal LEADS that of the input by +90o up to the centre or resonant 
frequency, ƒr point were it becomes “zero” degrees (0o) or “in-phase” and then changes 
to LAG the input by -90o as the output frequency increases. 

The upper an d lower cut-off frequency points for a bandpass filter can be 
found using the same formula as that for both the low and high pass filters, For example. 
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Then clearly, the width of the pass band of the filter can be controlled by the 

positioning of the two cut-off frequency points of the two filters. 

 
Band Pass Filter Example 

A second-order band pass filter is to be constructed using RC 
components that will only a llow a range of frequencies to pass above 1kHz (1,000Hz) 

and below 
30kHz 

 
 
 

 
(30,000Hz). Assuming that both the resistors have values of 10kΩ´s, calculate the values 
of the t wo capacitors required. 

 
 
 
 
 
 
 

The High Pass Filter Stage 

The value of the capacitor C1 required to give a cut-off frequency ƒL of 1kHz 
with a resistor value of10kΩ is calculated as: 

 

 

 

 
Then, the values of R1 and C1 required for the high pass stage to give a 

cut-off frequency of 1.0kHz are: R1 = 10kΩ´s and C1 = 15nF. 

 
The Low Pass Filter Stage 

The value of the capacitor C2 required to give a cut-off frequency ƒH of 30kHz with a 
resistor value of10kΩ is calculated as: 

 
 

Then, the values of R2 and C2 required for the low pass stage to give a cut- 
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off frequency of 30kHz are, R = 10kΩ´s and C = 510pF. However, the nearest preferred 
value of the calculated capacitor value of 510pF is 560pF so this is used instead. 

With the values of both the resistances R1 and R2 given as 10kΩ, and the 
two values of the capacitors C1 and C2 found for the high pass and low pass filters as 15nF 
and 560pF respectively, then the circuit for our simple passive Band Pass 
Filter is given as. 

 
Completed Band Pass Filter Circuit 

 

 

 
 

 
Band Pass Filter Resonant Frequency 

We can also calculate the “Resonant” or “Centre Frequency” (ƒr) point of the band pass 
filter were the output gain is at its maximum or peak value. This peak value is not the 
arithmetic average of the upper and lower -3dB cut-off points as you might expect but is 
in fact the “geometric” or mean value. This geometric mean value is calculated as 
being ƒr 2 = ƒc(UPPER) x ƒc(LOWER) for example: 

 
Centre Frequency Equation 

 

 
• Where, ƒr is the resonant or centre frequency 

• ƒL is the lower -3dB cut-off frequency point 

• ƒH is the upper -3db cut-off frequency point 
And in our simple example above, the calculated cut-off frequencies were 

found to be ƒL = 1,060 Hz and ƒH = 28,420 Hz using the filter values. 

Then by substituting these values into the above equation gives a central 

resonant frequency of: 
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Band-stop filters 

It is so called band-elimination, band-reject, or notch filters; this kind of 

filter passes all frequencies above and below a particular range set b y the component 

values. Not surprisingly, it can be made out of a low-pass and a high-pass filter, just like 

the band-pass design, except that this time we connect the two filter sections in parallel 

with each other instead of in series. (Figure below) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
System level block diagram of a band-stop filter. 

Constructed using two capacitive filter sections, it looks something like 

(Figure below). 

 
 
 
 
 
 

 



 

 Butterworth Filter 

 

A Butterworth filter is a type of signal processing filter designed to have a frequency 

response as flat as possible in the passband. Hence the Butterworth filter is also known as 

“maximally flat magnitude filter”. It was invented in 1930 by the British engineer and 

physicist Stephen Butterworth in his paper titled “On the Theory of Filter Amplifiers”. 

The frequency response of the Butterworth filter is flat in the passband (i.e. a bandpass 

filter) and roll-offs towards zero in the stopband. The rate of roll-off response depends on 

the order of the filter. The number of reactive elements used in the filter circuit will 

decide the order of the filter. 

The inductor and capacitor are reactive elements used in filters. But in the case of 

Butterworth filter only capacitors are used. So, the number of capacitors will decide the 

order of the filter. 

Here, we will discuss the Butterworth filter with a low pass filter. Similarly, the high pass 

filter can be designed by just changing the position of resistance and capacitance. 

Butterworth Low Pass Filter Design 

While designing the filter, the designer tries to achieve a response near to the ideal filter. 

It is very difficult to match results with the exact ideal characteristic. We need to use 

complex higher-order If you increase the order of the filter, the number of cascade stages 

with the filter is also increased. But in practice, we cannot achieve Butterworth’s ideal 

frequency response. Because it produces excessive ripple in the passband.In Butterworth 

filter, mathematically it is possible to get flat frequency response from 0 Hz to the cut-off 

frequency at -3dB with no ripple. If the frequency is more than the cut-off frequency, it 

will roll-off towards zero with the rate of -20 dB/decade for the first-order filter.If you 

increase the order of the filter, the rate of a roll-off period is also increased. And for 

second-order, it is -40 dB/decade. The quality factor for the Butterworth filter is 0.707. 

The below figure shows the frequency response of the Butterworth filter for various 

orders of the filter 
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Frequency Response of Butterworth FilterThe generalized form of frequency response for 

nth-order Butterworth low-pass filter is; 
 

 

Where, 

n = order of the filter, 

ω = operating frequency (passband frequency) of circuit 

ωC = Cut-off frequency 

ε = maximum passband gain = Amax 

The below equation is used to find the value of ε. 
 

 

 

Where, 

H1 = minimum passband gain 

H0 = maximum passband gain 

First-order Lowpass Butterworth Filter 

 

The lowpass filter is a filter that allows the signal with the frequency is lower than the 

cutoff frequency and attenuates the signals with the frequency is more than cutoff 

frequency. In the first-order filter, the number of reactive components is only one. The 

below figure shows the circuit diagram of the first-order lowpass Butterworth filter. 



 

 

 

The low pass Butterworth filter is an active Low pass filter as it consists of the op-amp. 

This op-amp operates on non-inverting mode. Hence, the gain of the filter will decide by 

the resistor R1 and RF. And the cutoff frequency decides by R and C. 

Now, if you apply the voltage divider rule at point Va and find the voltage across a 

capacitor. It is given as; 

 

 

 

Because of the non-inverting configuration of an op-amp, 

https://www.electrical4u.com/active-low-pass-filter/
https://www.electrical4u.com/active-low-pass-filter/
https://www.electrical4u.com/op-amp-circuit/
https://www.electrical4u.com/op-amp-circuit/
https://www.electrical4u.com/op-amp-circuit/
https://www.electrical4u.com/op-amp-circuit/
https://www.electrical4u.com/what-is-resistor/
https://www.electrical4u.com/what-is-resistor/
https://www.electrical4u.com/voltage-divider/
https://www.electrical4u.com/voltage-divider/
https://www.electrical4u.com/voltage-or-electric-potential-difference/
https://www.electrical4u.com/voltage-or-electric-potential-difference/


 

 
 

 

 

 

WHERE 
 

 

 

 

 

 

 

 
 

 

 

 



 

 

The below figure shows the frequency response of first-order lowpass Butterworth 

filter. 

 

Second-order Butterworth Filter 

The second-order Butterworth filter consists of two reactive components. The 

circuit diagram of a second-order low pass Butterworth filter is as shown in the 

below figure. 



 

 

In this type of filter, resistor R and RF are the negative feedback of op-amp. And 

the cutoff frequency of the filter decides by R2, R3, C2, and C3.The second-order 

lowpass Butterworth filter consists of two back-to-back connected RC networks. 

And RL is the load resistance. First-order and second-order Butterworth filters are 

very important. Because we can get higher-order Butterworth filter by just 

cascading of the first-order and second-order Butterworth filters. 

Let’s analyse the circuit of second-order Butterworth filter, 

Apply Kirchhoff’s Current Law at point V1. 

 
 

 

 



 

 



 

 

 

 

Rearrange this equation, 



 

 

 

 

 

 

 

Compare this equation with the standard form transfer function for second-order 

Butterworth filter. And that is, 
 

 

 

By comparing above equations, we can find the equation of cutoff frequency and 

overall gain for the second-order lowpass Butterworth filter. 

The gain of filter is, 



 

 
 

 

 

 

 



 

We can say that, the quality factor is only depends on the gain of filter. And the 

value of gain should not more than 3. If the value of gain is more than 3, the 

system will be unstable. 

The value of quality factor is 0.707 for the Butterworth filter. And if we put this 

value in equation of quality factor, we can find the value of gain. 
 

 

 

While designing the second-order Butterworth filter above relation must be satisfy. 

The frequency response of this filter is as shown in below figure. 
 

 

Third-order Lowpass Butterworth Filter 

 

 

Third-order lowpass Butterworth filter can design by cascading the first-order and 

second-order Butterworth filter. 



 

 

The below figure shows the circuit diagram of the third-order lowpass Butterworth filter. 
 

 

 

Third-order Low Pass Butterworth Filter 

In this figure, the first part shows the first-order lowpass Butterworth filter, and the 

second part shows the second-order lowpass Butterworth filter. 

 

But in this condition, the voltage gain of the first part is optional and it can be set at any 

value. Therefore, the first op-amp is not taking part in voltage gain. Hence, the figure for 

the third-order low pass filter can be expressed as below figure also; 

 

;  



 

 

 

 

The voltage gain of a second-order filter affects the flatness of frequency response. 

If the gain of the second-order filter is kept at 1.586, the gain will down 3db for 

each part. So, the overall gain will down 6dB at the cutoff frequency. 

By increasing the voltage gain of the second-order filter, we can offset the 

cumulative loss of voltage gain. 

In the third-order Butterworth filter, the rate of a roll-off period is -60dB/decade. 

And the frequency response of this filter is nearer to the ideal Butterworth filter 

compared to the first and second-order filters. The frequ 
 

 

 

(frequency response of this filter is as shown in the below figure.) 

 

Fourth-order Lowpass Butterworth Filter 

Fourth-order Butterworth filter is established by the cascade connection of two 

second-order low pass Butterworth filters. The circuit diagram of the fourth-order 

lowpass Butterworth filter is as shown in the below figure. 
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