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CHAPTER1

Magnetic Circuits

Introduction :

Magnetic flux lines always form closed loops. The closed path followed by the
flux lines is called a magnetic circuit. Thus, a magnetic circuit provides a path for
magnetic flux, just as an electric circuit provides a path for the flow of electric
current. In general, the term magnetic circuit applies to any closed path in space,
but in the analysis of electro-mechanical and electronic system this term is
specifically used for circuits containing a major portion of ferromagnetic
materials. The study of magnetic circuit concepts is essential in the design,
analysis and application of electromagnetic devices like transformers, rotating
machines, electromagnetic relays etc.

Magnetomotive Force (M.M.F) :

Flux is produced round any current — carrying coil. In order to produce the required
flux density, the coil should have the correct number of turns. The product of the
current and the number of turns is defined as the coil magneto motive force (m.m.f).

If | = Current through the coil (A)
N = Number of turns in the coil.
Magnetomotive force = Current x turns

So M.M.F=IXN
The unit of M.M.F. is ampere—turn (AT) but it is taken as Ampere(A) since N
has no dimensions.

Magnetic Field Intensity:

Magnetic Field Intensity is defined as the magneto-motive force per unit length of the
magnetic flux path. Its symbol is H.



Magnetomotive force

Magnetic field Intensity (H) = - -
Mean length of the magnetic path

=—"" A/m
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Where [ is the mean length of the magnetic circuit in meters. Magnetic field intensity is also
called magnetic field strength or magnetizing force.

Permeability :-

Every substance possesses a certain power of conducting magnetic lines of force. For
example, iron is better conductor for magnetic lines of force than air (vaccum) . Permeability
of a material (W) is its conducting power for magnetic lines of force. It is the ratio of the flux
density. (B) Produced in a material to the magnetic filed strength (H).

Reluctance :
Reluctance (s) is akin to resistance (which limits the electric Current).

Flux in a magnetic circuit is limited by reluctance. Thus reluctance(s) is a measure of the
opposition offered by a magnetic circuit to the setting up of the flux.

Reluctance is the ratio of magneto motive force to the flux. Thus

« _ Mmf /
S= /b

Its unit is ampere turns per webber (or AT/wb).
Permeance:-
The reciprocal of reluctance is called the permeance (symbol A).

Permeance (A) = 1/S wb/AT



Turn T has no unit.

Hence permeance is expressed in wb/A or Henerys(H).

B.H. Curve :

Place a piece of an unmagnetised iron bar AB within the field of a solenoid
to magnetise it. The field H produced by the solenoid, is called magnetising field,
whose value can be altered (increased or decreased) by changing (increasing or
decreasing) the current through the solenoid. If we increase slowly the value of
magnetic field (H) from zero to maximum value, the value of flux density (B)
varies along 1 to 2 as shown in the figure and the magnetic materials (i.e iron
bar) finally attains the maximum value of flux density (Bm) at point 2 and thus

becomes magnetically saturated.

Fig. 2.1

Now if value of H is decreased slowly (by decreasing the current in the
solenoid) the corresponding value of flux density (B) does not decreases along 2-1
but decreases some what less rapidly along 2 to 3. Consequently during the
reversal of magnetization, the value of B is not zero, but is '13' at H= 0. In other
wards, during the period of removal of magnetization force (H), the iron bar is not

completely demagnetized.

In order to demagnetise the iron bar completely, we have to supply the
demagnetisastion force (H) in the opposite direction (i.e. by reserving the

direction of current in the solenoid). The value of B is reduced to zero at point 4,



when H='14". This value of H required to clear off the residual magnetisation, is
known as coercive force i.e. the tenacity with which the material holds to its

magnetism.

If after obtaining zero value of magnetism, the value of H is made more
negative, the iron bar again reaches, finally a state of magnetic saturation at the
point 5, which represents negative saturation. Now if the value of H is increased
from negative saturation (= '45') to positive saturation ( ='12') a curve '5,6,7,2'
is obtained. The closed loop "2,3,4,5,6,7,2" thus represents one complete cycle

of magnetisation and is known as hysteresis loop.



CHAPTER 02

COUPLED CIRCUITS

It is defined as the interconnected loops of an electric network through the
magnetic circuit.

There are two types of induced emf.
(1) Statically Induced emf.
(2) Dynamically Induced emf.

Faraday’s Laws of Electro-Magnetic :

Introduction - First Law :>

Whenever the magnetic flux linked with a circuit changes, an emf is induced in it.
OR

Whenever a conductor cuts magnetic flux an emf is induced in it.

Second Law :—

It states that the magnitude of induced emf is equal to the rate of change of flux
linkages.

OR

The emf induced is directly proportional to the rate of change of flux and
number of turns

Mathematically :
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Where e = induced emf
N = No. of turns
¢ = flux

‘- ve’ sign is due to Lenz’s Law



Inductance ;>

It is defined as the property of the substance which opposes any change in Current & flux.
Unit ;- Henry

Fleming’s Right Hand Rule:->

It states that “hold your right hand with fore-finger, middle finger and thumb at right angles
to each other. If the fore-finger represents the direction of field, thumb represents the
direction of motion of the conductor, then the middle finger represents the direction of
induced emf.”

Lenz’s Law : >

It states that electromagnetically induced current always flows in such a

direction that the action of magnetic field set up by it tends to oppose the vary
cause which produces it.

OR

It states that the direction of the induced current (emf) is such that it opposes the
change of magnetic flux.

(2) Dynamically Induced emf :>

B
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In this case the field is stationary and the conductors are rotating in an uniform magnetic
field at flux density ‘B” Wb/mt2 and the conductor is lying perpendicular to the magnetic
field. Let /' is the length of the conductor and it moves a distance of ‘dx’ nt in time ‘dt’
second.

The area swept by the conductor = /. dx
Hence the flux cut = ldx. B
Change in flux in time ‘dt’ second =



Bldx
dt
E =Blv
If the conductor is making an angle ‘0’ with the magnetic field, then
e = Blv sin©



(1) Statically Induced emf :>

Here the conductors are remain in stationary and flux linked with it changes
by increasing or decreasing.

It is divided into two types .

(i) Self-induced emf.

(ii) Mutually-induced emf.

(i) Self-induced emf: - It is defined as the emf induced in a coil due to the
change of its own flux linked with the coil.

v

Gab

If current through the coil is changed then the flux linked with its own turn
will also change which will produce an emf is called self-induced emf.
Self-Inductance :—

It is defined as the property of the coil due to which it opposes any change
(increase or decrease) of current or flux through it.

Co-efficient of Self-Inductance (L) :=>

It is defined as the ratio of weber turns per ampere of current in the coil.
OR

It is the ratio of flux linked per ampere of current in the coil.

1st Method for ‘L’ :=>
.\"r;‘}

/
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Where L = Co-efficient of self-induction
N = Number of turns

d=fluxl=

Current

2nd

Method



forL:>

We know
that
Neh
i AR
/
= L/ = Nd
= —LI = -N¢
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dr dt
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dr ar
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i
7
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dr

Where L = Inductance

il ,
¢, ==N—1s known as seli-induced emf

dr
. dl
When — =lamp/sec.
!
e=1voltlL
=1 Henry

A coil is said to be a self-inductance of 1 Henry if 1 volt is induced in it.
When the current through it changes at the rate of 1 amp/ sec.

3rd Method for L :—>
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Where A = Area of x-section of the coil
N = Number of turns
L = Length of the coil



(ii)) Mutually Induced emf :-

It is defined as the emf induced in one coil due to change in current in other
coil. Consider two coils ‘A’ and ‘B’ lying close to each other. An emf will be
induced in coil ‘B’ due to change of current in coil ‘A’ by changing the position

of the rheostat.
A B

Mutual Inductance :-
It is defined as the emf induced in coil ‘B’ due to change of current in coil ‘A’
is the ratio of flux linkage in coil ‘B’ to 1 amp. Of current in coil ‘A’.

Co-efficient of Mutual Inductance (M):
Coefficient of mutual inductance between the two coils is defined as the
weber-turns in one coil due to one ampere current in the other.

1st Method for ‘M’ :—>

\ No

/
N2 = Number of turns
M = Mutual
Inductance ¢1 = flux
linkage l1=Currentin

ampere

2nd Method for M :>
We know that

3
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Where
ar
ew=-1VOLT
Then M =1 Henry
A coil is said to be a mutual inductance of 1 Henry when 1 volt is induced
when the current of 1 amp/sec. is changed in its neighbouring coil.

3rd Method for M =
i MM ANN,
/
Co-efficient of Coupling :
Consider two magnetically coupled coils having N1and N2 turns respectively.
Their individual co-efficient of self-inductances are

M

M. M. AN
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7
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The flux ¢1produced in coil ‘A’ due to a current of I1ampere is
o Ll MM AN? 1
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Suppose a fraction of this flux i.e. Kidzis linked with coil ‘B’



Then A - LS Kt KN,
7 :

Similarly the flux ¢2produced in coil ‘B’ due to l2amp. Is

_ MM ANI,

B I

Suppose a fraction of this flux i.e. Kad2is linked with coil ‘A’
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Where ‘K’ is known as the co-efficient of coupling.
Co-efficient of coupling is defined as the ratio of mutual inductance
between two coils to the square root of their self- inductances.

Inductances In Series (Additive) :=>

Fluxes are 1o the same durection
Let M = Co-efficient of mutual inductance L1=
Co-efficient of self-inductance of first coil.
L2 = Co-efficient of self-inductance of second coil.
EMF induced in first coil due to self-inductance



dl

a3
Mutually induced emf in first coil
i1
ey =-M—
i di
EMF induced in second coil due to self induction
o g G
“L < dt
Mutually induced emf in second coil
dl
(Iu ~— —.11 ——
' dt

Total induced emf
E=zeu+en+emit+emz

If ‘L’ is the equivalent inductance, then

J i dl
-Lﬁ:-Llﬂ-_\;.‘l-Li_-_ul_
dt at dr Cdt dr
dl ol
= —=—(] - -2}{)
o @ar'~ -
>L=L+L+IM

Inductances In Series (Substnactive) :->

L, L.
" i
[

(Fluxes are opposze m direction)

Let M = Co-efficient of mutual inductance

L1 = Co-efficient of self-inductance of first coil

L2 -= Co-efficient of self-inductance of second coil
Emf induced in first coil due to self induction



dl

e, ==L, —
L 1
’ di
Mutually induced emf in first coil
f { \ ,
ey —— -M al |=M al
! \ -jf d’
Emf induced in second coil due to self-induction
ol
L)J:’O = —L.' s
B dl
Mutually induced emf in second coil
// | .'7'[
ey, = -M—|=M=
\ dr ) dt
Total induced emf
€ =€L. +eL. +em +EeM
Then
g al - dr . W al . ., 4l
a1 X g dt ! i
—'l'<_.‘:‘~_h‘|{ +L,=2M) =l=L+10.-2M

it il

Inductances In Parallel :=>
Iy

Let two inductances of L; & L;are connected in parallel Let
the co-efficent of mutual inductance between them is M.

[-i1+i2
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If ‘L’ is the equivalent inductance
= Ld—'- L -‘-ﬁ-l- M — ]
dr ar dt
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dr Ldl daf
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Substituting the value ot'-‘%
{

di 1; LM

L

Ll |dt
Equating equatlon (3) & (5)
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When mutual field assist.
LL -M*
L+L,+2M

When mutual field opposes.
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Exp.-01:

Two coupled cols have self inductances Li= 10x103H and L2= 20x10-3H.
The coefficient of coupling (K) being 0.75 in the air, find voltage in the
second coil and the flux of first coil provided the second coils has 500

turns and the circuit current is given by i1 = 2sin 314.1A. Solution :
M=KVL1L2
M = 0.75vV10x10-3x 20x10-5
=>M =10.6x10-;H
The voltage induced in second coil is
di1
V- ae
=10.6x1073 x 2x314 cos 314dt.



The magnetic circuit being linear,

\f - N.g. ) S00x(Ka)

[ I,

\f 106107 3
I = x 2sin 3141

00Xk ' 300x0.75
=566 %107 sin 314t

o=

Exp. 02

Find the total inductance of the three series connected coupled coils.Where
the self and mutual inductances are
Li=1H, L= 2H, L3=5H M12=

0.5H, M23=1H, M13=1H

Solution: La= L1+ M2+ M3
=1+20.5+1

=2.5H

Le= L2+ M23+ M2

=2+1+0.5

=3.5H

Lc= L3+ M23+ Mi3

=5+1+1

=7H

Total inductances are

Lea=La+ L+ Lc

=25+35+7

= 13H (Ans)



CHAPTER3

Circuit Elements and analysis

1.1 Voltage

Energy is required for the movement of charge from one point to another. Let W Joules
of energy be required to move positive charge Q columbs from a point ato point b in a
circuit. We say that a voltage exists between the two points. The voltage V between
two points may be defined in terms of energy that would be required if a charge were
transferred from one point to the other. Thus, there can be a voltage between two points
even if no charge is actually moving from one to the other. VVoltage between a and b is

given by

Worked are (W) in Joules
Hence Electric Potential (V) =

Ch arge (Q)in columbs

Current :

An electric current is the movement of electric charges along a definite path. In case of

a conductor the moving charges are electrons.

The unit of current is the ampere. The ampere is defined as that current which when
flowing in two infinitely long parallel conductors of negligible cross section, situated 1 meter

apart in Vacuum, produces between the conductors a force of 2 x 107" Newton per metre length.

Power : Power is defined as the work done per unit time. If a field F newton acts for t seconds
through a distance d metres along a straight line, work done W = Fxd N.m. or J.

The power P, either generated or dissipated by the circuit element.



w Fxd
p="0



Work
Power can also be written as Power =
time

Work  Charge
= X = Voltage x Current Charge Time

P =V x| watt.

Energy : Electric energy W is defined as the Power Consumed in a given time. Hence, if
current 1A flows in an element over a time period t second, when a voltage V volts is applied

across it, the energy consumed is given by

W=Pxt=VxIxt Jor watt. second.

The unit of energy W is Joule (J) or watt. second. However, in practice, the unit of energy

is kilowatt. hour (Kwh)

1.2 Resistance : According to Ohm's law potential difference (V) across the ends of a
conductor is proportional to the current (1) flowing through the conductor at a constant

temperature. Mathematically Ohm's law is expressed as

ValorV=RxI

V
OrR= _ where R is the proportionality constant and is designated as the conductor
I

resistance and has the unit of Ohm (Q).

Conductance : Voltage is induced in a stationary conductor when placed in a varying

magnetic field. The induced voltage (e) is proportional to the time rate of change of
current, di/dt producing the magnetic field.
di

Therefore e a
dt

di
Ore=L



dt

e and i are both function of time. The proportionality constant L is called inductance. The

Unit of inductance is Henery (H).

Capacitance : A capacitor is a Physical device, which when polarized by an electric field by

applying a suitable voltage across it, stores energy in the form of a charge separation.

The ability of the capacitor to store charge is measured in terms of capacitance.

Capacitence of a capacitor is defined as the charge stored per Volt applied.

1.3

g Coulomb
C= = = Farad v VoIt

Active and passive Branch :

A branch is said to be active when it contains one or more energy sources. A passive

branch does not contain an energy source.

Branch : A branch is an element of the network having only two terminals.

Bilateral and unilateral element :

A bilateral element conducts equally well in either direction. Resistors and inductors
are examples of bilateral elements. When the current voltage relations are different for
the two directions of current flow, the element is said to be unilateral. Diode is an

unilateral element.

Linear Elements : When the current and voltage relationship in an element can be

simulated by a linear equation either algebraic, differential or integral type, the element

is said to be linear element.

Non Linear Elements : When the current and voltage relationship in an element can

not be simulated by a linear equation, the element is said to be non linear elements.



1.4 Kirchhoff's Voltage Law (KVL) :

The algebraic sum of Voltages (or voltage drops) in any closed path or loop is Zero.
Application of KVL with series connected voltage source.
R,

auw

=
—..—V1

Fig. 1.1
Vi+V2-IR1—-1IR2=0
=V1+V: =1 (R1+Ry)

Vi+ V2

Ri+ R

Application of KVL while voltage sources are connected in opposite polarity.
R'.

AN

.

e

R.‘i
Fig. 1.2
V1— |R1—V2— |R2— |R3: 0

Vi—-Vo=1R1+IR2 + IR3



Vi—-V2=1 (R1+ IRz + IR3)
Vl_VZ
| =
Ri+ R2+ Rs

Kirchaoff's Current Law (KCL) :

The algebraic sum of currents meeting at a junction or mode is zero.

Fig. 1.3

Considering five conductors, carrying currents I, I, I3, 12 and Is meeting at a point O.
Assuming the incoming currents to be positive and outgoing currents negative.

l1+(-l)+ 13+ (-ls)) +15=0
li—la+1l3-14+15=0

lh+ls+Ils=1l+ 14

Thus above Law can also be stated as the sum of currents flowing towards any junction
in an electric circuit is equal to the sum of the currents flowing away from that junction.

Voltage Division (Series Circuit)

Considering a voltage source (E) with resistors Ry and Rz in series across it.
R,

MWV

E + /D § .

Fig. 1.4



Ri+ R>
E.R!
Voltage drop across R1 = 1. Ry =
Ri+ R
E.R!
Similarly voltage drop across R> = LRz =
Ri+ R2

Current Division :

A parallel circuit acts as a current divider as the current divides in all branches in a

parallel circuit.

Fig. 1.5

Fig. shown the current I has been divided into 11 and Iz in two parallel branches with resistances

R1 and R2 while V is the voltage drop across R: and Ro.

\/ \/
lh=__ and L=
R: R2

Let R = Total resistance of the circuit.

-
-
-



R Ri R

RiR2
R=
R:+ R
Vv V _ V(R*+R?
|]=—= RR " ———
R 12 RiR >
R: +R:

But=V = I1R1 = IbR»

(__ RiR?)||

I = iR1||| R1 +R2)

I1(R1+ R?
| =
R:
IR
Therefore I, = 2
Ri+ R

Similarly it can be derived that

IR




NETWORK ANALYSIS

Different terms are defined below:

1.

7.

Circuit: A circuit is a closed conducting path through which an electric current either
flow or is intended flow

Network: A combination of various electric elements, connected in any manner.
Whatsoever, is called an electric network

Node: it is an equipotential point at which two or more circuit elements are joined.
Junction: it is that point of a network where three or more circuit elements are joined.
Branch: it is a part of a network which lies between junction points.

Loop: Itis a closed path in a circuit in which no element or node is accounted more than
once.

Mesh: It is a loop that contains no other loop within it.

Example 3.1 In this circuit configuration of figure 3.1, obtain the no. of i) circuit elements ii)
nodes iii) junction points iv) branches and v) meshes.



Rs

a Solution:

i) no. of

circuit



elements =

12 (9

resistors + 3

voltage

sources)

ii) no. of

nodes =10



(@ b, c,de,

f, g, h, k, p)

iii) no. of

junction

points =3 (b,

e, h) iv) no.

of branches



=5 (bcde,

be, bh,

befgh, bakh)

V) no. of meshes = 3 (abhk, bcde, befh)
3.2 MESH ANALYSIS

Mesh and nodal analysis are two basic important techniques used in finding solutions
for a network. The suitability of either mesh or nodal analysis to a particular problem depends
mainly on the number of voltage sources or current sources .If a network has a large number of
voltage sources, it is useful to use mesh analysis; as this analysis requires that all the sources in
a circuit be voltage sources. Therefore, if there are any current sources in a circuit they are to
be converted into equivalent voltage sources, if, on the other hand, the network has more current
sources,nodal analysis is more useful.

Mesh analysis is applicable only for planar networks. For non-planar circuits mesh analysis
is not applicable .A circuit is said to be planar, if it can be drawn on a plane surface without
crossovers. A non-planar circuit cannot be drawn on a plane surface without a crossover.

Figure 3.2 (a) is a planar circuit. Figure 3.2 (b) is a non-planar circuit and fig. 3.2 (c) is a
planar circuit which looks like a non-planar circuit. It has already been discussed that a loop is
a closed path. A mesh is defined as a loop which does not contain any other loops within it. To
apply mesh analysis, our first step is to check whether the circuit is planar or not and the second
is to select mesh currents. Finally, writing Kirchhoff's voltage law equations in terms of
unknowns and solving them leads to the final solution.



®

=

(@) (b) (©
Figure 3.2

Observation of the Fig.3.2 indicates that there are two loops abefa,and bcdeb in the
network .Let us assume loop currents 11 and lowith directions as indicated in the figure.
Considering the loop abefa alone, we observe that current I1 is passing through Ry, and (1:-12) is
passing through R2. By applying Kirchhoff’s voltage law, we can write

Vs =l1R1+R2(l1-12) (3.1)

R1 Rs

R VAV e A VAVAV. :

Vs RZ

R4

A

A

f e

(N

Figure 3.3

Similarly, if we consider the second mesh bcdeb, the current |2 is passing through Rz
and R4, and (2 — I1) is passing through R2. By applying Kirchhoff’s voltage law around the
second mesh, we have

Rz (I2-11) + R3l2 +R4l2=0 (3.2



By rearranging the above equations,the corresponding mesh current equations are
I1 (R1+R2) - 12R2=Vs.

-11R2 +(R2+R3+Ry4) 1,=0 (3.3)

By solving the above equations, we can find the currents I; and 12, 1f we observe Fig.3.3,
the circuit consists of five branches and four nodes, including the reference node.The number
of mesh currents is equal to the number of mesh equations.

And the number of equations=branches-(nodes-1).in Fig.3.3, the required number of
mesh current would be 5-(4-1)=2.

In general we have B number of branches and N number of nodes including the
reference node than number of linearly independent mesh equations M=B-(N-1).

Example 3.2 Write the mesh —\/\V/\W\
5Q 10Q2
current equations in the circuit shown 10 T
\Y 2Q
S0v

in fig 3.4 and determine the currents.

Figure 3.4

Solution: Assume two  mesh currents in the direction as
indicated in fig. 3.5. The mesh current equations are



—\V\V/\
1av l1 I2 10Q
I <
2Q 50V
Figure 3.5
511+ 2(11-12) = 10
101>+ 2(12-11) +50=0 (3.4)

We can rearrange the above equations as
711-21,=10
-211+121,=-50 (3.5

By solving the above equations, we have 1:=0.25 A, and I, =-4.125
Here the current in the second mesh I, is negative; that is the actual current I, flows opposite to
the assumed direction of current in the circuit of fig .3.5.

Example 3.3 Determine the mesh current Iz in the circuit shown in fig.3.6.

_,.
SOVC

Figure 3.6

Solution: From the circuit, we can from the following three mesh equations

1011+5(11+15) +3(I1-13) = 50 (3.6)



212 +5(I2+11) +1(12+13) = 10
3(Is-11) +1(Is+l2) =-5
Rearranging the above equations we get
1811+512-313=50
511+8l> + 13=10
-3l1+ I+ 4l3=-5

According to the Cramer’s rule

50 5 -3
| 8 |
101 1

|
-5 5 41175

11=|18 g =
| |
5 -3
| 35
6
-3 |
1]
|
4]

Or 1:= 3.3 A Similarly,

[18 50 - 3]
| |5 10

| | 356

Or 1=-0.997A
(3.12)

|-3-5

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

4| - 355



18 5  50]

8
51 10
| ]
|- 35  —5|525
4= [ 1g 8 T
| 1 -3 356
|
| S 1 |
| |
|._ 3 4J
Or 15=1.47A (3.13)

~11=3.3A, 12=-0.997A, 13=1.47A

3.3 MESH EQUATIONS BY INSPECTION METHODThe mesh equations for a general planar network can be written
by inspection without going through the detailed steps. Consider a three mesh networks as shown in figure 3.7

The loop equation are hiR1+ Ro(li-12)  =V1 R1 Rs

Figure 3.7
Ro( 12-11)+12R3= -V2 3.14
Ralz+Rsl3=V> 3.15
Reordering the above equations, we have
(R1+R2)11-Ral2=V4 3.16
-Roli+(Ra+R3)12=-VV> 3.17
(R4+Rs)13=V2 3.18

The general mesh equations for three mesh resistive network can be written as

Ri1l1 + Ri12l2 £ Risls= Va 3.19



+ Roi1l1+R2212 + R23l3= Vb 3.20

+ R31l1 + R32l2+R33l3= V¢ 3.21

By comparing the equations 3.16, 3.17 and 3.18 with equations 3.19, 3.20 and 3.21 respectively,
the following observations can be taken into account.

1. The self-resistance in each mesh

2. The mutual resistances between all pairs of meshes and 3. The algebraic

sum of the voltages in each mesh.

The self-resistance of loop 1, Ru=R1+Ry, is the sum of the resistances through which 11
passes.

The mutual resistance of loop 1, Ri2= -Ry, is the sum of the resistances common to loop
currents I1 and 2, If the directions of the currents passing through the common resistances are
the same, the mutual resistance will have a positive sign; and if the directions of the currents
passing through the common resistance are opposite then the mutual resistance will have a
negative sign.

Va=V1 is the voltage which drives the loop 1. Here the positive sign is used if the
direction of the currents is the same as the direction of the source. If the current direction
is opposite to the direction of the source, then the negative sign is used.
Similarly R22=R>+R3 and R33=R4+Rs are the self-resistances of loops 2 and 3
respectively. The mutual resistances R13=0, R21=-R2, R23=0, R31=0, R32=0 are the sums
of the resistances common to the mesh currents indicated in their subscripts.

Vb= -V2, V= V; are the sum of the voltages driving their respective loops.

Example 3.4 write the mesh equation for the circuit shown in fig. 3.8
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Figure 3.8

Solution : the general equation for three mesh equation are

Riil1 £ Ra2l2 £ Ru3lz=Va (3.22)
+ R21l1+R2212 £ R23l3=Vb (3.23)
+ Rs1l1 £ Rs2l2+R3sls=Ve (3.24)

Consider equation 3.22

Rii1=self resistance of loop 1=(1Q+ 3 Q +6 Q) =10 Q
R12= the mutual resistance common to loop 1 and loop 2 =-3 Q
Here the negative sign indicates that the currents are in opposite direction .

R13= the mutual resistance common to loop 1 & 3=-6 Q
V.= +10V, the voltage the driving the loop 1.

Here he positive sign indicates the loop current 11 is in the same direction as the source
element.

Therefore equation 3.22 can be written as
10 I1- 3I2-613=10 V (3.25)

Consider Eq. 3.23
R21= the mutual resistance common to loop 1 and loop 2 =-3Q

R2o= self resistance of loop 2=3Q+ 2 Q +5 Q) =10 Q
R23=0, there is no common resistance between loop 2 and 3.

Vb= -5V, the voltage driving the loop 2.



Therefore Eq. 3.23 can be written as
=311+ 101= -5V (3.26)
Consider Eq. 3.24
Rs1=the mutual resistance common to loop 1 and loop 3=-6 Q
Rs2=the mutual resistance common to loop 3 and loop 2 =0
Ra3= self resistance of loop 3=(6Q2+ 4 Q) =10 Q
V= the algebraic sum of the voltage driving loop 3
=(5 V+20V)=25V (3.27)
Therefore, Eq3.24can be written as -611 + 10l3= 25V
-611-312-613= 10V
-311+101,=-5V
-61:+1013=25V

3.4 SUPERMESH ANALYSIS

Suppose any of the branches in the network has a current source, then it is slightly difficult to
apply mesh analysis straight forward because first we should assume an unknown voltage
across the current source, writing mesh equation as before, and then relate the source current
to the assigned mesh currents. This is generally a difficult approach. On way to overcome this
difficulty is by applying the supermesh technique. Here we have to choose the kind of
supermesh. A supermesh is constituted by two adjacent loops that have a common current
source. As an example, consider the network shown in the figure 3.9.

R
+ V I1 I2 Rs I3 R4
«— «— —
1 l® 2 3
Figure 3.9

Here the current source | is in the common boundary for the two meshes 1 and 2. This current
source creates a supermesh, which is nothing but a combination of meshes 1 and 2.

Ril1 + R3(l2-13)=V
Or Ril1 + Rsl2- Rals=V
Considering mesh 3, we have

Ra(I3-12)+ Ral3=0



Finally the current I from current source is equal to the difference between two mesh currents
le.

11-1>=1

we have thus formed three mesh equations which we can solve for the three unknown currents
in the network.

Example 3.5. Determine the current in the 5Q resistor in the network given in Fig. 3.10

Figure 3.10

Solution: - From the first mesh, i.e. abcda, we have
50 = 10(l1-12) + 5(11-13)

Or 151;-101,-515=50 (3.28)

From the second and third meshes. we can form a super mesh
10(12-11)+212 +13+5(15-11)=0

Or -1511+12I,+613=0 (3.29)
The current source is equal to the difference between Il and 111 mesh currents

ie. l-13=2A (3.30)
Solving 3.28.,3.29 and 3.30. we have
1:=19.99A,1,=17.33 A, and I3= 15.33 A

The current in the 5Q resistor =l1 -l3
=19.99 -15.33=4.66A

The current in the 5Q resistor is 4.66A.



Example 3.6. Write the mesh equations for the circuit shown in fig. 3.11 and determine the
currents, 11, 12 and Is.

10V t

I1 C)—
I2 Is

F 3
Mioa 30 1Q
<« — 20
4—
I I Il
Figure 3.11

Solution ; Infig 3.11, the current source lies on the perimeter of the circuit, and the first
mesh is ignored. Kirchhoff's voltage law is applied only for second and third meshes .

From the second mesh, we have
3(l2-11)+2(12-13)+10 =0

or -3114515-213=-10 (3.31)

From the third mesh, we have
I3+ 2 (Is-12) =10

Or -21,+313 =10 (3.32)
From the first mesh, 11 =10A (3.33)

From the abovethree equations, we get

1:=10A, 12=7.27, 13=8.18A

3.5 NODALANALYSIS

In the chapter | we discussed simple circuits containing only two nodes, including the reference
node. In general, in a N node circuit, one of the nodes is chosen as the reference or datum node, then it
is possible to write N -1nodal equations by assuming N-1 node voltages. For example,al0 node circuit
requires nine unknown voltages and nine equations. Each node in a circuit can be assigned a number or
a letter. The node voltage is the voltage of a given node with respect to one particular node, called the



reference node, which we assume at zero potential. In the circuit shown in fig. 3.12, node 3 is assumed
as the Reference node. The voltage at node 1 is the voltage at that node with respect to node 3. Similarly,
the voltage at node 2 is the voltage at that node with respect to node 3. Applying Kirchhoff’s current
law at node 1, the current entering is the current leaving (See Fig.3.13)

1 2

H

R

Rs

Figure 3.12

2

l1 )

Figure 3.13

1= V1/R1+ (V1-V2)/Rz2
Where Viand V:are the voltages at node 1 and 2, respectively. Similarly, at node 2.the
current entering is equal to the current leaving as shown in fig. 3.14

R2

Figure 3.14

(V2-V1)/R2 + V2/R3 + V2/(R4+Rs) =0

Rearranging the above equations, we have

V1[1/R1+1/R2]-V2(1/R2)= 11



-V1(1/R2) + V2[1/R2+1/R3+1/(R4+Rs)]=0
From the above equations we can find the voltages at each node.

Example 3.7 Determine the voltages at each node for the circuit shown in fig 3.15

10Q J\;\S}\/\j 20
VWSAVWS

D ®
10V 50 5A 1Q 6Q

Figure 3.15

Solution : At node 1, assuming that all currents are leaving, we have

(V1-10)/10 + (V1-V2)/3 +V1/5 + (V1-V2)/3 =0
Or Vi[1/10 +1/3 +1/5+1/3]-V2[1/3+1/3]=1

0.96V1-0.66V2=1 (3.36)

At node 2, assuming that all currents are leaving except the current from current source, we
have

(V2-V)/I3+ (V2-V1)[3+ (V2-V3)/2 =5

-V1[2/3]+V2[1/3 +1/3 + 1/2]-V/3(1/2) =5

-0.66V1+1.16V»-0.5V3=5 (3.37)

At node 3 assuming all currents are leaving, we have
(V3-V2)/2 + V3/1 + V3/6 =0
-0.5V2 + 1.66V3=0 (3.38)

Applying Cramer’s rule we get

[1-066 0 |
| |

5 116 -05

| |
|0 -05 166 |7.154

| |- |
?-66 116 - 05|
o |



V1= ]Similarly,

0.887 =

[ 096 1
|
—~0.66 5-05
|
| 0
|- 0.66 1.16
|
o0 -05 1.66]
[ 096 —0.66
| 1.16
—0.66
|
| 0 _oe6

vizlgos 116
|- -05
0.66
|
|0

0 166

0.96-0.660 | =

8.06

9.06

Vo= 0.96

1]

|
o] 273
0= 0.887
= 3.07

- 05 °

— 05|

1.66 |

- 0.66 0 || =0.887 =10.2

3.6 NODAL EQUATIONS BY INSPECTION METHOD The nodal equations for a general planar network can also be written by
inspection without going through the detailed steps. Consider a three node resistive network, including the reference node, as shown in fig

3.16

R1

Rs3

Rs

Figure 3.16
In fig. 3.16 the points a and b are the actual nodes and c is the reference node.

Now consider the nodes a and b separately as shown in fig 3.17(a) and (b)



@)

— =
Figure 3.17
In fig 3.17 (a), according to Kirchhoff’s current law we have
[1+1>+13=0
(Va-V1)/R1 +Va/Ro+ (Va-Vp)/R3= 0 (3.39)
In fig 3.17 (b) , if we apply Kirchhoff’s current law
l4+ 15= 13
~(Vb-Va)/R3 + Vp/Ra+(Vp-V2)/Rs=0 (3.40)
Rearranging the above equations we get
(1/R1+1/R2+1/R3)Va-(1/R3)Vb=(1/R1) V1 (3.41)
(-1/R3)Va+ (L/R3+1/Rs+1/Rs)Vp=V2/Rs (3.42)
In general, the above equation can be written as
GaaVa + GaVb=l1 (3.43)
GpaVa + GouVo=I2 (3.44)

By comparing Eqgs 3.41,3.42 and Eqgs 3.43, 3.44 we have the self conductance at node
a, Gaa=(1/R1 + 1/R2 + 1/Rs3) is the sum of the conductances connected to node a. Similarly, Gp,=
(1/Rs + 1/R4 +1/Rs) is the sum of the conductances connected to node b. Gap=(-1/R3) is the sum
of the mutual conductances connected to node a and node b. Here all the mutual conductances
have negative signs. Similarly, Gpa= (-1/R3) is also a mutual conductance connected between
nodes b and a. I, and I, are the sum of the source currents at node a and node b, respectively.
The current which drives into the node has positive sign, while the current that drives away
from the node has negative sign.



Example 3.8 for the circuit shown in the figure 3.18 write the node equations by the
inspection method.

4Q

Fig 3.18
Solution:-
The general equations are
GaaVa+GanVb=I1 (3.45)
GpaVa + GopVb=I2 (3.46)

Consider equation 3.45

Gaa=(1+ 1/2 +1/3) mho. The self conductance at node a is the sum of the conductances
connected to node a.

Gob = (1/6 + 1/5 + 1/3) mho the self conductance at node b is the sum of conductances connected
to node b.

Gab =-(1/3) mho, the mutual conductances between nodes a and b is the sum of the
conductances connected between node a and b.

Similarly Gpa = -(1/3), the sum of the mutual conductances between nodes b and a.

1,=10/1 =10 A, the source current at node a,
1,=(2/5 + 5/6) = 1.23A, the source current at node b.

Therefore, the nodal equations are



1.83V,-0.33V,=10 (3.47)

-0.33V,+0.7Vy= 1.23 (3.48)
3.7 SUPERNODE ANALYSIS

Suppose any of the branches in the network has a voltage source, then it is slightly difficult to
apply nodal analysis. One way to overcome this difficulty is to apply the supernode technique.
In this method, the two adjacent nodes that are connected by a voltage source are reduced to a
single node and then the equations are formed by applying Kirchhoff’s current law as usual.
This is explained with the help of fig. 3.19

V1 V2 + V3
W N ,
2 _/ 3
R> Vx
1 @® R Rs Rs Rs
— \Vy
4
FIG 3.19

It is clear from the fig.3.19, that node 4 is the reference node. Applying Kirchhoff’s current law
at node 1, we get

|:(V1/R1 ) + (V1-Vz)/R2

Due to the presence of voltage source V, in between nodes 2 and 3, it is slightly difficult
to find out the current. The supernode technique can be conveniently applied in this case.

Accordingly, we can write the combined equation for nodes 2 and 3 as under.
(V2-V1)/R2 + V2/R3 + (V3-Vy)/Rs +V3/Rs= 0

The other equation is
V2-V3 =Vx

From the above three equations, we can find the three unknown voltages.



Example 3.9 Determine the current in the 5 Q resistor for the circuit shown in fig.
3.20

2Q

5Q 2Q

(F10A3Q

10V fig. 3.20

Solution. At node 1
10=V,/3 + (V1-V2)/2
Or V1[1/3 +1/2]-(V2/2)-10=0

0.83V1-0.5V>-10 =0 (3.49)

At node 2 and 3, the supernode equation is
(V2-V1)/2 + Va/1 + (V3-10)/5 +V3/2 = 0
Or V12 +V[(1/2)+1]+ V3[1/5 + 1/2]=2
Or  -0.5Vi+ 1.5V,+0.7V3-2=0 (2.50)
The voltage between nodes 2 and 3 is given by

V2-V3=20 (3.51)



Chapter-04

NETWORK THEORM

INTRODUCTION

This chapter introduces a number of theorems that have application throughout the field of
electricity and electronics. Not only can they be used to solve networks such as encountered in
the previous chapter, but they also provide an opportunity to determine the impact of a
particular source or element on the response of the entire system. In most cases, the network to
be analyzed and the mathematics required to find the solution are simplified. All of the
theorems appear again in the analysis of ac networks. In fact, the application of each theorem
to ac networks is very similar in content to that found in this chapter.

The first theorem to be introduced is the superposition theorem, followed by Thévenin’s
theorem, Norton’s theorem, and the maximum power transfer theorem. The chapter concludes
with a brief introduction to Millman’s theorem and the substitution and reciprocity theorems.

SUPERPOSITION THEOREM

The superposition theorem states that “The current through, or voltage across, any
element of a network is equal to the algebraic sum of the currents or voltages produced
independently by each source.”

In other words, this theorem allows us to find a solution for a current or voltage using
only one source at a time. Once we have the solution for each source, we can combine the
results to obtain the total solution. The term algebraic appears in the above theorem statement
because the currents resulting from the sources of the network can have different directions,
just as the resulting voltages can have opposite polarities.

If we are to consider the effects of each source, the other sources obviously must be
removed. Setting a voltage source to zero volts is like placing a short circuit across its terminals.
Therefore, when removing a voltage source from a network schematic, replace it with a direct
connection (short circuit) of zero ohms. Any internal resistance associated with the source must
remain in the network.

Setting a current source to zero amperes is like replacing it with an open circuit. Therefore,
when removing a current source from a network schematic, replace it by an open circuit of
infinite ohms. Any internal resistance associated with the source must remain in the network.

The above statements are illustrated in Fig.
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EXAMPLE 9.1 s wy K Fon .D.\
a. Using the superposition theorem, determine the current |
throughresistor R2 for the network in Fig. 9.2.
Solutions:

In order to determine the effect of the 36 V voltage source, FIG.a2

the currentsource must be replaced by an open-circuit etwork o ine amalvoed i Kxmmple 5.1, wing e
equivalent as shownin Fig. 9.3. The result is a simple series

k
b 1

sapeTposUior theovem.

circuit with a current equal to Cunmne
T E 6V 36V g
fo = —= - - - = e 0 A = Y —
= I{T R T I(: l_, !l + 6 ‘.2 ]-\ ‘) ‘ I21--
Examining the effect of the 9 A current source requires replacing i Sl T = 2
the 36 V voltage source by a short-circuit equivalent as shown in 1 ]

Fig. 9.4. The result is a parallel combination of resistors R1 and 2.

Applying the current divider rule results in iz g ERNG
= R(h  (1202)9A) 6 A e I o e |
2 Rl BDBAER

Since the contribution to current 12 has the same direction for i .}\,, — .

each source, as shown in Fig. 9.5, the total solution for current 12 a1 N

isthe sum of the currents established by the two sources. That is, o zea ( )1=9
L=1I+E=2A+6A=8A I

v

EXAMPLE 9.2 Using the superposition theorem, determine the
currentthrough the 12 resistorsin Fig. 9.8. Note that this is a two-source networkof the
type examinedin the previous chapter when we appliedbranch-current analysis and mesh

analysis.

Wy T W
y [
[P FAY N é 24} [ E J4
FAG. &8
Uxing the sapepostion thewvm b determine th
coervenel Urroogh M 12 8} oovavtonr $ Example 9.2

Solution: Considering the effects of the 54 V source requires replacingthe 48 V source by a
short-circuit equivalent as shown in Fig. 9.9.The result is that the 12 and 4 resistors are
in parallel. The total resistance seen by the source is therefore,

Re =R+ RIR=2U0+1R2040=240+30=270

and the source current is
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Using the current divider rule results in the contribution 1o /, due to the
4 V source:

R,,‘

(4 IK2 A)

I

R+ R, 40 +120

05 A

If we now replace the 54 V source by a short-circuit equivalent, the

network in Fig 9.10 results. The result is a parallel connection for the
12 0 and 24 ) resistors.

Therefore, the total resistance seen by the 48 V source is

Rr=Ri+R|R=40+120040=40+80=120

R~$~U.l

Using the O L theayynt tor determine the effect of the 5 Vvolrage source o carrent £y in Fig 9.8
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HG.9.10
Using the superposizion theorem to deteemine the effect of the 48 V voltage source on curvent Iy in Fig. 9.8,
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It 15 now important 1o realize that current fy doe 1o each souree has o
different direction, as shown in Fig. 9.1 1. The net current therefore is the
difference of the two and in the direction ol the Jarger as lollows
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Lising the results of Figs. Y9 and ©.10 1o determine

cureent Iy for the network in Fig, 4.8



EXAMPLE 9.3 Using the superposition theorem, determine current 11 for the network in
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Solution: Since two sources are present, there are two networks

to beanalyzed. First let us determine the effects of the voltage

source by settingthe current source to zero amperes as shown !
in Fig. 9.13. Note thatthe resulting current is defined as I’
because it is the current throughresistor R1 due to the voltage

source only.

Due to the open circuit, resistor R1 is in series (and, in fact, in FIG .13
parallel)with the voltage source  E. The voltage across the o TP
resistor is the appliedvoltage, and current 11’ is determined by )

p=V_E_30V_
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Now for the contribution due to the currentsource.

Setting the voltagesource to zero volts results in the Fo————' * l :

network in Fig. 9.14, this presents us with an ]

interesting situation.The current source has been I v @ . : §
/ A '

replaced witha short-circuit equivalent that is

directly across the current source andresistor R1. s |
Since the source current takes the path of least LS
resistance, it X
chooses the zero ohm path of the inserted short- ¥
circuit equivalent, andthe current through R1 is zero FG.9.14

amperes. This is clearly demonstrated by an  Weterminng the cffect of the 3 A currenl sourve on
application of the current divider rule as follows:
R. 1 (0 Q)1

1% - 00 +6D

the carrent I in Fig. 9.12.

fs = 0A

R.
Sinee /{ and /5 have the same defined direction in Figs, 913 and 9, 14,

the toud current s delined by
Lh =1 1= 8A +0A =5A

Although this has been an excellem inroduction 1o the application of
the superposition theorcm, it should be immediately clear in Fig, 9,12

that the voltage source 1s 10 parallel with the current source and load

resistor Ry, so the voluge across esch must be 300V, The result is that [,
must be determined solely by
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EXAMPLE 9.4 Lsing the peinciple of supeposition, fnd the current /,

through the 12 K resistor in Fig. 9.15.
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Solutian: Consider the cffect of the 6 mA current source (Fig. 9.16), ! &mA ..:' H' \f_}
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Solution: Cowmder the effect of the 12V sourge (Fig, 9.10)
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9.3 THEVENIN’S THEOREM

The next theorem to be introduced, Thévenin’s theorem, is probably one of the most

interesting in that it permits the reduction of complex networks to a simpler form for analysis

and design.

In general, the theorem can be used to do the following:

 Analyze networks with sources that are not in series or parallel.

* Reduce the number of components required to establish the same characteristics at the
output terminals. M\ °d

* Investigate the effect of changing a particular component on the befjaviourrgf,a network
without having to analyze the entire network after each change.

All three areas of application are demonstrated in the examplesto  =m=— £
follow.
Thévenin’s theorem states the following:

e h

Any two-terminal dc network can be replaced by an equivalent circu kg
consisting solely of a voltage source and a series resistor as shown

in FIG. 9.23

Fig. 9.23. I, .. —
The theorem was developed by Commandant Leon-Charles Thévediflghe 17 eauivalent circuit.

1883 as described in Fig. 9.24.

To demonstrate the power of the theorem, consider the

fairly complex network of Fig. 9.25(a) with its two sources and
series-parallel connections.
The theorem states that the entire network inside the blue shaded
area can be replaced by one voltage source and one resistor as
shown in Fig. 9.25(b). If the replacement is done properly, the
voltage across, and the current through, the resistor RL will be the
same for each network. The value of RL can be changed to any

FIG. 3.24

Leow-Charles Thévenin

Connmesy of the Bl hogue Foalke

Palyredusigue, Pana, Fraoce,



value, and the voltage,current, orpower to the load resistor is the same for each

configuration.

Now, this is a very powerful statement—one that is verified in the examplesto follow.

The question then is, How can you determine the proper value ofThévenin voltage and
resistance? In general, finding the Thévenin resistance value is quite straightforward. Finding
the Thévenin voltage can bemore of a challenge and, in fact, may require using the
superpositiontheorem.

Fortunately, there is a series of steps that will lead to the proper valueof each parameter.
Although a few of the steps may seem trivial at first,they can become quite important when
the network becomes complex.

Thévenin’s Theorem Procedure

Preliminary:

1. Remove that portion of the network where the Thévenin equivalentcircuit is found. In
Fig. 9.25(a), this requires that the load resistorRL be temporarily removed from the
network.

2. Mark the terminals of the remaining two-terminal network.(The importance of this step
will become obvious as we progress through some complex networks.)RTh :

3. Calculate RTh by first setting all sources to zero (voltage sourcesare replaced by short
circuits and current sources by open circuits)and then finding the resultant resistance
between the two markedterminals. (If the internal resistance of the voltage and/or current
sources is included in the original network, it must remain whenthe sources are set to
zero.)ETh :

4. Calculate ETh by first returning all sources to their original positionand finding the
open-circuit voltage between the marked terminals.(This step is invariably the one that
causes most confusionand errors. In all cases, keep in mind that it is the open-circuit
potential between the two terminals marked in step 2.) Conclusion:

5. Draw the Theévenin equivalentcircuit with the portion of thecircuitpreviously removed
replaced between the terminals of theequivalent circuit. This step is indicated by the
placement of theresistor RL between the terminals of the Thévenin equivalentcircuitas
shown in Fig. 9.25(b).

_é,_Mv‘v
(F] In
FIG. 9.25
Subatitatong the Thévewin Sganralered carcad for ol nerwork
EXAMPLE 9.6 Find the Thévenin equivalent circuit for the network in
i L the shaded area of the network in Fig. 9.26. Then find the current through

l " Ry for values of 2 Q. 10 . and 100 €.

*—ﬂlll—

FiG. 22¢
Flmple V.0



Salution:

Stepy 1 and 2 Thoss

produce the network in Fig. 9 27 Nate that the load

resistor R has been removed and the two “holding™ teyminals have been
Jdoefmed as o and b

Srep 3.

Replacing the voltage source & with o short-carcunt equavalent

vields the network in Fag. 9 25(n), where

(MAING L))

Ry, R R — 260
: 10+ 610
", o ® a [ )
A . AN = > |Dh
¥ =g |
: ‘ / \ IBES
e - . W ’
| =60 —n, | "=
l l -]; = 3
- ,-
'—i" ~» = ¢
\ A1)
Fli:. S 2N

They wre the two ermrinals actoss which the
muosured, It 1x no loager the total resistance ax

Oetemmining Rya fox the neiwoek ia Fig, V.27

The importance of the two marked tonmmnals now begins w surface.
IMéEyenmn resistance i
seen by the source. ns

Jdetermined i the mugority of problems of Chapters 7. 11 some diffculy
develops when determining Ky with regard 1o whethers the resistive
elements are in sencs or parallel. consider recalling that the ohmmeser
sends out a4 nckle current Into a resestive combunation und sensces the

level of the resulting voltage to establish the measured resistance
level. In Fig. 9.28(b), the trickle current of the ohmmeter approaches
the network through terminal a, and when it reaches the junction of R1
and R2,it splits as shown. The fact that the trickle current splits and
then recombines at the lower node reveals that the resistors are in
parallel as far as the ohmmeter reading is concerned. In essence, the
path of the sensing current of the ohmmeter has revealed how the
resistors are connected tothe two terminals of interest and how the
Thévenin resistance should bedetermined. Remember this as you
work through the various examplesin this section.

Step 4: Replace the voltage source (Fig. 9.29). For this case, the
opencircuitvoltage ETh is the same as the voltage drop across the 6
resistor.

Applying the voltage divider rule gives
_ (642X9 V)

= " 30 o

Ry + Ry

It is particularly important 1o recognize that Eyy is the open-circuit
potential between points o and H, Remember that an open ciecuit ¢an
have any voltage across (L but the current must be zero. In fact. the cur-
rent through any element in serles with the open circull must be zero
aiso, The use of a voltmeter 1o measure Fq, nppears in Fig. 9,30 Note
that it is placed directly across the resistor R, since £, and Vi are in

paralicl

Step 5 {Fig. 9.31):
£
I = o
Rln Rl
- 6V
A‘, =-2'&a: [[ — ‘(l‘—’(—‘ = I.§A
» (’ \' -
Re=100; [=gg—==05A
6V
R‘ = JO0D 11 1, = > O “i‘—”—i‘; = 06 \
¥ | )12

If Thévenin's theorem were unavailable, each change in R, would
require that the entire network In Flg 926 be reexamined to find the
mew vadue of 8,

Lo e e

FIG. 9.27

sreomenals of ey win

iy daree whew apgdvoeg

Thiveman 's o

L3
— 1
T
l,.—i;\v RN [
l } 2 i
9. 94

Detroviing by B e sl s Fig 017

v L]

_l‘,
Y

g R
Mewaring S Av e avmanl s Fig 027

J”' J

Fa=200 ‘|[.\

da =tV -_/q'r,

| I,
-

na.sn
Sobawdntryg tor Ticvonin opamalont v Ao bae
seword extoreal o B de Vig 9.2¢
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EXAMPLE 9.7 Find the Thévenin equivalent circuit for the network in the shaded area of

the network in Fig. 9.32.

Solution:

Steps 1 and 2: See Fig. 9.33.
Step 3: See Fig. 9.34. The current source has been replaced with anopen-circuit equivalent

and the resistance determined between terminals a and b.
In this case, an ohmmeter connected between terminals a and b sendsout a sensing current

that flows directly through R1 and R2 (at the samelevel). The result is that R1 and R2 are in
series and the Thévenin resistanceis the sum of the two,

Ry =R +R=40+20 =680

AMy—s

=
—— .
- n FIG. 9.33
FIG. 9.32 Establishing the terminals of particular
gpel interest for the network in ¥ig. 9.32.
Lxample 9.
R + A v -
Wy W——2 A "
s ¢) / ' Rs =21 1 =1 o ’ o -1
- 3d 7 a2l
R §.u- o é o = Ep ~ %YV R;g'n
T -
| - 5 - ® 0\
-.' h =
HG. 8.34 FIG. 8 3 FIG. 9.36
cieranning I\'n WE e tetwovk Deternun [ Ctwork Substituting the Thevemin vquivedent cirewil i U
in Fip. 9,33 (nFig. 033 network exte vl 10 the resasior Rain Fig 9,32

Step 4: See Fig. 9.35. In this case, since an open circuit exists betweenthe two marked

terminals, the current is zero between these terminals resistor. The

voltage drop across R2 is, therefore,

V2=12R2=(0)R2=0V
and ETh=V1=11R1=IR1=(12A)(4 )-48V

Step 5: See Fig. 9.36.

EXAMPLE 9.8 Find the Thévenin ‘Nv

equivalent circuit for the network in " |

the shaded area of the network in Fig. 0

9.37. Note in this example thatthere is ="

no need for the section of the network L " T
<

L‘glil

s Ol Ny !

to be preserved to be at the“end” of |
the configuration.

FIG.9.37



AW
l 102
Solution:
Steps 1 and2: See Fig. 9.38 : 211
P J /«.',§m..' £ =8N R g_‘sz
? f
l |
=
FIG. 9,38

g 9.27.

Tdentifving the revminals of particedar intevest for the netwaoek in T,

(38 Circust redeawin:

' A
‘Short circunted T ”

\ W .
‘n 44 l.t
‘ )
>
R, §"‘ L} Rn ”, 3‘ 2 {1l » l—’ R, hil R, § 41l
-

+
= Re= 00H210 = D52

FG. 9.39
Fio. 938

[)f'l'("";,l‘{’.’l"!" l’\’r: |'l r l’}’(' nen nl‘:‘\ i

Step 3: See Fig. 9.39. Steps 1 and 2 are relatively easy to apply, but nowwe must be careful
to “hold” onto the terminals a and b as the Théveninresistance and voltage are determined. In

Fig. 9.39, all the remainingelements turn out to be in parallel, and the network can be
redrawn asshown. We have

(6 (214 () 24 () B

Rn. - /\)| R~ — = 2.4 .(2
6f) + 41} [()
R,
A
A 40 Ry S A1)
! * [} - V R § ()
— >3 I—'—— BY . ‘
£y ¢ f‘?"! Ly =8\ ".'gr"" | A%hl!
s +
2 t
-
= FIG. 9.41
FIG. 9.40 Network of Fig. Y40 redrown,

Determiming foy, for the network in Fig. .38,

Step 4: See Fig. 9.40. In this case, the network can be redrawn as shownin Fig. 9.41. Since
the voltage is the same across parallel elements, thevoltage across the series resistors R1 and

R2 is E1, or 8 V. Applying thevoltage divider rule gives

R.E, (6OIBY) 48V

= =38V

’.l —
ORI +R, 60 +40 10
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WV s B

Step 5: See Fig. 9.42. Ry = 240

~= Ej;, = 48V Ry §z 0
EXAMPLE 9.9 Find the ¥
Thévenin equivalent circuit for the b
network inthe shaded area of the -

bridge network in Fig. 9.43.

FIG. 9.42
Substituting the Thevenin equivalent circuit for the
nemwork external 1o the resistor Ry in Fig. 9.37.

Fa

N\ 60/ O\ (30}
60 Ny 120 ; ;Ll 4
V$Ak‘/ P %\ . . R %
J_+ A c [ = S0 e oo 3 X
b TR — S ] I ~
_— 12V e AN e - W m e A
: Nk MRl b
3 JLI\ 10 L
NS k= =
FIG. 9.44
FIG. 9.43 ldentifving the rerminaly of particutar interest for 1
Exampie 9.9, network in Fig. Y45,
Solution:
Steps 1 and 2: See Fig. 9.44.
Step 3: See Fig. 9.45. In this case, the short-circuit replacement of the voltagesource E

provides a direct connection between c and ¢ in Fig. 9.45(a),permitting a “folding” of the
network around the horizontal line of a-b toproduce the configuration in Fig. 9.45(b).

l\’,x = ["'i h = ,\) ,\,‘ ¥ I(v I{;

=6NI30<=401120
=2f) + 3£ = 54}

N gl S M!% R N/ By\an

lll—«P—'— —
¥
‘w
= v :
Nes H
s :. ;
=~
Al

44 i - 2
) (h)
FIG. 9.45

Solving for Ry, for the network in Fig. 2.44,



Step 4: The circuit i1s redrawn in Fig. 9.46. The absence of a direct con-
nection between g and b results in a network with three parallel branches.
The voltages V and V5 can therefore be determined using the voltage
divider rule:

R,E (6 QN72V) 432V ,
‘/. —_— —_— = — —_— — == 4._' \:‘
R, + Ry, 6f+30 9
y RLE (12 Q72 V) 8364 V P
Vo = —— = ST S ¥ — 54V
C R + Ry 12 L2 + 4 () 16

T (Lo 5 - = 1 ! =
B e, 12V E — - & -—
s T b a
R+ %3 Q R, 40
— “
_
FIG, 9.46

Determaniing Eqy, for the network in Fig. 9.44.

Wy T

’ Ryp w510
!

Assuming the polanty shown for Eyy and applying Kirchhoff's volt ¢ v
3 . . S mh
age law tothe top loop in the clockwise direction resulls in o

SV =+ El’l‘l T \'II - V =0
and b =Vi—=V, =54V — 4V =06Y¥

L

Step 5: See Fig. 9.47.

a. Find the Thévenin equivalent circuit for the
portion of the networkin the shaded area.

b. Reconstruct the network of Fig. 9.54 with the 64
Thévenin equivalentnetwork in place. . L
c. Using the resulting network of part (b) find ) S0
the voltage Va. £, ==V
Solutions: 'T

EXAMPLE 9.11 For the network of Fig. 9.54, ——AMN—— i
/
S
A A

a. Steps 1 and 2: See Fig. 9.55.
Step 3: See Fig. 9.56.

it

FIG. 9,54

Cumple v 1!

Ro=120)d0Q+60)=120]100=3

- =

Step 4: Applying the superposition theorem, we will first find the
effect of the voltage source on the Thévenin voltage using the network
of Fig. 9.57. Applying the voltage divider rule:

s 12 Q (18 V) B s
"~ 40 + 120 g7 9




/ T
61} v I &0
2A Y
fn
g 1202 e
+ Ry
t‘,Tl:«\' J
-
FIG. 9.55

SIS ] & e 1) .n", orineere
Establishing the termincdy of iiterest
foar the network of Fie. 954,

W

FIG. 5.55
Dermining Re,

4L

441 2 A A S—
—W— /
: O

‘ /.\ ' A 2 61) 1 O

/ <
g 6 A AAA
| 1.‘-3!§«'_-. 0 El.’” £
| : :
_ [ WYy Ly =18V
’ ! ! s --

- o
(RN h ?
FIG. 9.58 FIG. 9.57

Deserming the conteibaien of 1o Ey, Dietermmning the comtribution of Ey to Eg
The comnbuton due K e current source 38 determimed st the
network of Fig. €580 redrawn a5 shown in Fig, 958b), Applymg P E,
the current divider rule; M'ﬂ\ 1I|I )

102A) 8 Atk 1Y
[=—————="—"A=0364A
40 + 180 22

and E=-1"120)= 0364 A12Q) = —437TV ?xn

sothit Ep = ER + ERy =082V — 437V = §45V
b, The reconsiructad petwork i shownin Fig. Y.54.

¢ Using the volinge divider nve

81545V + 16V)
e 5450 + 80

R(21.45 7
< |\‘,_ |

1345 34

6
3 V=1276YV

Instead of usng the superposition theoren, the current sotree could first
have been converted to 4 vollage source and the series elements com-
bined to determine the Thévenin voltage o any event boch approaches
would have yielded the same resilts,

llI '

Thévein egubvulent

FG 959
Applying the Thévenin equivalent network to the
nemwork of Fig. V.54,



9.4 NORTON’S THEOREM

Any two-terminal linear bilateral dc network can be
replaced by an

equivalentcircuit consisting of a current source and a
parallel

resistor, as shown in Fig. 9.65.

Dr 3

FIG. 9.64
o b Eadward L. Norton,
Reprinied with the permission of
FIG. 9.65 Lucent Technologies, Inc./Bell Labs,
Norton equivalent circuit.

The discussion of Thévenin’s theorem with respect to the equivalentcircuit can also be
applied to the Norton equivalent circuit. The stepsleading to the proper values of IN and RN
are now listed.

Norton’s Theorem Procedure

Preliminary:

1. Remove that portion of the network across which the Nortonequivalent circuit is found.
2. Mark the terminals of the remaining two-terminal network.

RN:

3. Calculate RN by first setting all sources to zero (voltage sources are replaced with short
circuits and current sources with opencircuits) and then finding the resultant resistance
between the twomarked terminals. (If the internal resistance of the voltage and/orcurrent
sources is included in the original network, it must remainwhen the sources are set to
zero.) Since RN _ RTh, the procedureand value obtained using the approach described for
Thévenin’stheorem will determine the proper value of RN.

IN:

4. Calculate IN by first returning all sources to their original positionand then finding the
short-circuit current between the markedterminals. It is the same current that would be
measured by anammeter placed between the marked terminals.

Conclusion:

5. Draw the Norton equivalent circuit with the portion of the circuitpreviously removed
replaced between the terminals of the equivalentcircuit.

The Norton and Thévenin equivalent circuits can also be found fromeach other by using the
source transformation discussed earlier in thischapter and reproduced in Fig. 9.66.

Wv B —
Ry = Ry :
-'.

= Eyy = IyRy i L By = Rp
~ « ) R'Hl x
L -

= =

FIG. 9.66

Converting between Thevenin and Norton eqguivalent cercuets.,



WA -
3fl
+ -~
E=9V R 641 3 R;
= b
AG. 9.67
Example 9.32.
R
A'AQ'.V d
ifl
+ -
EZ=_9V RS 60l
-IL- D
FiG. 9.68

Identifving the terminals of particalar interest for
the network in Fip. 9.67.

R
ANy -
31l
Ry <$: 6l Ry
x b
FAG. 9.69

Determining Ry for the network in Fip. 9.68

@,'.': A R,\'—_ :“ gp'
| |
=

FIG. 9.1
Sulrsriiating e Normouw eqarvilest erreull for e
eehwork extemal to the resistor By in Fip. 9.67.

EXAMPLE 9.12 Find the Norton equivalent circuit for
the network inthe shaded area in Fig. 9.67.
Solution:
Steps 1 and 2: See Fig. 9.68.
Step 3: See Fig. 9.69, and
(3 [1)6 )

Ry =R |R=30l60=—"—"—

30+ TR =

6 () 0

Step 4: See Fig. 9.70, which clearly indicates that the
short-circuit connectionbetween terminals a and b is in
parallel with R2 and eliminatesits effect. IN is therefore
the same as through R1, and the full battery voltage
appears across R1 since

Vo=5LR =16} =0V
Therefore,
E 0V
y=-—=—"=1
"R 30

Step 5: See Fig. 9.71. Thiscircuit is the same as the first
one consideredin the development of Thévenin’s
theorem. A simple conversion indicatesthat the
Thévenin circuits are, in fact, the same (Fig. 9.72).

I| R I I Short
MWV
1) | %0 P
I t ! 0
EE==_9V VR, <61} I
| } ) Yy
-?L Short ciscusted -~

FIG. 9.70

Determining I for the netwer'k in Fip, 9.68

Rp = Ry=210

AN .
+
I 1Ny =k = LRy = BAZN
FIG. 9.72

Converimg e Nortam equivident Ciecanr in Fig. 971 oo
Thevenin eguivalent circuit.

EXAMPLE 9.13 Find the Norton equivalent circuit for the network
external to the 9 _ resistor in Fig. 9.73.

Solution:
Steps 1 and 2: See Fig. 9.74.



3 |
| 54
/51“\ - p————- [ \———o W
/ | O
-
. =4
s <1 104 &, g J 1 R.g ! 0a
- - >
= b -
FIG. 9.73 FIG. 9.74
Example 9.1 3. IJc'NI{I_\-Jl!,: the terminls of
particular interest for ihe nerwenk in
Fig. 4.73. K
—MAh—
: > T 541
Step 3: See Fig. 9.75, and — : —e'a
Ryv=R+R=50+40=9Q
R: < - l\'—
Step 4:-As shown in Fig. 9.76, the Norton carrent is the same as the cur-
rent through the 4 £ ressstor. Applving the curront divider rule gives A
: S = .
Ry (54)(104) S0A -
Iy = - - = 556 A
R +R: 511 +41) 9 FIG.5.75
g v - e IDetermiming Ry lor the neneork in
Step 5 See Fig. 9.77 ”;.,:."'u 24,
R
Wy
50 =
S _@ : - _— oS s Iy 5.56 A n.§v 0 R=on
Ry = 4 A . » i (0 A ' S50
} ) o a n
= ' = .
FIG. 9.27

FIG 976

Determining Iy for the netwanrd in Fig 074

Suhstitanng the Norton equivadent circu for e
nerwork extemal Lo the cesistor By in Fig. 9.73.

EXAMPLE 9.14 (Two sources) Find the Norton equivalent circuit forthe portion of the

network to the left of a-b in Fig. 9.78.

o
2 ‘ >
P R %411 R, 290
i T 4 ! -
R IC)):‘\ K, $"“ A f §A R, §6n -"’43“”3
f"?"?‘ Ey="TV E,-BE |2V
R o - .T = | +
- = b
FIG. 979
Identifyinyg the terminals of particelar interes: FIG. 9,78
for the network in Fig. 9.78. Examiple 9,14
Solution.
Steps | and 2: See Fig, 9.79.
Step 30 See Fig, .80, and
406 240
Ry =R IR:=41 61} = = = 2
v | A t ] 10 - 60 0 4 £

Step 4: (Using superposition) For the 7V battery (Fig. 9.51)



\hlu'\llf‘,l,\lh‘.f o Fl - A e
= ‘ e VTR a0
ﬁ,< 412 > ' For the 8 A source (Fig, 9.82), we find that both R, and R; have been
‘T R.<62 &7 “shoet circuited” by the direct connection between a and . and
BT ‘ fy=1=84
l The resuli is
I |
. lo=101y—1=8A - 1L7TSA =625 A
‘ FIG. 9.81 Step 5: See Fig, 983
Determining the covitribution (o Ly from the voltuge
source £
9.5 MAXIMUM POWER TRANSFER AROR CHTRicd a
| b L™
R, <40 N
r;,g»ﬁ!] L ,$ ,’@\5 R, Se0n 4
I 625A Ry = 241 R‘s:"!ll!.' [ I
¢ B 2V Y | 4 f f
.- |8 | — = '
s % J Al b
= 2
FIG. 8 82
FIG.9.83 Determining the contribtion to Iy from the cwrront
Substituting the Narton equivalent circuit for the network to the left of sovree |
leeminads a-b in Fig. 9.78
THEOREM

When designing a circuit, it is often important to be able to answer oneof the following

questions:

What load should be applied to a system to ensure that the load isreceiving maximum

power from the system?
Conversely:

For a particular load, what conditions should be imposed on thesource to ensure that it

will deliver the maximum power available?

Even if a load cannot be set at the value that would result
often helpful to have some idea of the valuethat will draw
compare it to the load athand. For instance, if a design cal
thatthe load receives maximum power, using a resistor of
transfer thatis much less than the maximum possible.
However, using a load of 82 or 120  probably results

in maximumpower transfer, it is
maximum power so that you can
Is for a load of 100 , to ensure
1 orlk resultsinapower

in a fairlygood level of power

transfer.Fortunately, the process of finding the load that will receive maximumpower from a
particular system is quite straightforward due to the maximum power transfer theorem,

which states the following:

A load will receive maximum power from a network when itsresistance is exactly equal to
the Thévenin resistance of the networkapplied to the load. That is,

In other words, for the Thévenin equivalent circuit in Fig. 9.84, when the
load is set equal to the Thévenin resistance, the load will receive maxi-
mum power from the network.

Using Fig. 9.84 with R; = Ry;., we can determine the maximum
power delivered to the load by first finding the current:
; — _ Em Ep _ _ En,
B —

R +~ Ry Rm + Rm  2Rm,

Then we substitute into the power equation:

2 Eq \? E7nRn
P = IR, = <2RT’) Rqp) = AR2
h Th

AN 7
Ry n
o
—Em Ry =Ry
FIG. 9.84

Defining the conditions for maximum power to a
load using the Thévenin equivalent circuit.



and P =— (9.3)

The total power delivered by a supply such as ETh is absorbed by both the Thévenin
equivalent resistance and the load resistance. Any power delivered by the source that does
not get to the load is lost to the Thévenin resistance.

Under maximum power conditions, only half the power delivered by the source gets to the
load. Now, that sounds disastrous, but remember that we are starting out with a fixed
Thévenin voltage and resistance, and the above simply tells us that we must make the two
resistance levels equal if we want maximum power to the load. On an efficiency basis, we are
working at only a 50% level, but we are content because we are getting maximum power out
of our system.

The dc operating efficiency is defined as the ratio of the power delivered to the load (PL) to the
power delivered by the source (Ps). That is,

P _
n% = — X 100% (9.4)

5

For the situation where R; = Ry,

IR, R;
EL % 100% = == X 100% =
2R, Ry Ry +

Ry, 1
X 100% = — X 100% = 50%
ZRTh 2

n% =

If efficiency is the overriding factor, then the load should be much larger than the internal
resistance of the supply. If maximum power transfer is desired and efficiency less of a
concern, then the conditions dictated by the maximum power transfer theorem should be
applied.

A relatively low efficiency of 50% can be tolerated in situations where power levels are
relatively low, such as in a wide variety of electronic systems, where maximum power
transfer for the given system is usually more important. However, when large power levels
are involved, such as at generating plants, efficiencies of 50% cannot be tolerated. In fact, a
great deal of expense and research is dedicated to raising power generating and transmission
efficiencies a few percentage points. Raising an efficiency level of a 10 MKW power plant
from 94% to 95% (a 1% increase) can save 0.1 MkW, or 100 million watts, of power—an
enormous saving. In all of the above discussions, the effect of changing the load was
discussed for a fixed Thévenin resistance. Looking at the situation from a different viewpoint,
we can say

if the load resistance is fixed and does not match the applied Thévenin equivalent
resistance, then some effort should be made (if possible) to redesign the system so that the
Thévenin equivalent resistance is closer to the fixed applied load.

In other words, if a designer faces a situation where the load resistance is fixed, he or she
should investigate whether the supply section should be replaced or redesigned to create a
closer match of resistance levels to produce higher levels of power to the load.




For the Norton equivalent circuit in Fig. 9.90, maximum power willbe delivered to the load
when,

This result [Eq. (9.5)] will be used to its
fullest advantage in the analysis of transistor

networks, where the most frequently applied o
transistorcircuit model uses a current source I |
rather than a voltage source.
For the Norton circuit in Fig. 9.90, I RN§ gRL = Ry
IR;RN o o
Lon = T (W) (q‘f’ i 8-
To demonstrate that maximum power is FIG. 9.90

indeed transferred to the load
under the conditions defined above, consider
the Thévenin equivalentcircuit in Fig. 9.85.

Defining the conditions for maximum power to a
load using the Norton equivalent circuit.

Before getting into detail, however, if you Ry, P,
were to guess what valueof  RL would result in ———MA———— /
maximum power transfer to RL, you might think ol Tv

that the smaller the value of  RL, the better it is

+
60V §'RL v,

+
because the currentreaches a maximum when it =
is squared in the power equation. The problem T
is, however, that in the equation PL =1 2 .
LRL, theload resistance is amultiplier. As it gets

smaller, it forms a smaller product. Then again, FIG. 9.85
youmight suggest larger values of RL because  Thévenin equivalent network to be used to validate
the output voltage increases, and power is the maximum power transfer theorem.

determinedby PL = V 2 L /RL. This time,

however, the loadresistance is in the denominator of the equation and causes the resulting
power to decrease. A balance must obviously be made between the load resistance and the
resulting current or voltage. The following discussion shows that

maximum power transfer occurs when the load voltage and current are one-half their
maximum possible values.

For the circuit in Fig. 9.85, the current through the load is determined by

Er, 60V
II — —_— — — — —— — —_—
Ry + Ry 04 +- R,
The voltage is determined by
\ R, E4, R, (60 V)
“ R+ Ry R+ Ry,
and the power by
P i2p ( 6OV )3 R IHDOR,
N— . — e — ( ) = —— S
! LA 91 - R‘, y i (VL) = "II yo
If we tabulate the three quantities versus a range of values for By from
0.1 £2 10 30 L2, we obtain the results appearing in Table 9.1, Note in

particular that when R, is equal 1o the Thévemn resistance of 9 (2, the



power has a maximum value of 100 W, the current is 3.33 A, or one-half its maximum value
of 6.67 A (as would result with a short circuit across the output terminals), and the voltage
across the load is 30 V, or one-half its maximum value of 60 V (as would result with an open
circuit across its output terminals). As you can see, there is no question that maximum power
is transferred to the load when the load equals the Thévenin value.

The power to the load versus the range of resistor values is provided in Fig. 9.86. Note in
particular that for values of load resistance less than the Thévenin value, the change is dramatic
as it approaches the peak value. However, for values greater than the Thévenin value, the drop
is a great deal more gradual. This is important because it tells us the following:

If the load applied is less than the Thévenin resistance, the power to the load will drop off
rapidly as it gets smaller. However, if the applied load is greater than the Thevenin resistance,
the power to the load will not drop off as rapidly as it increases.

Iv CD Ry

FIG. 9.90
Defining the conditions for maximum power to a
load using the Norton equivalent circuit.

In all of the above discussions, the effect of changing the load was
discussed for a fixed Thévenin resistance. Looking at the situation from
a different viewpoint, we can say

if the load resistance is fixed and does not match the applied
Thévenin equivalent resistance, then some effort should be made (if
possible) to redesign the system so that the Thévenin equivalent
resistance is closer to the fixed applied load.

In other words, if a designer faces a situation where the load resistance is
fixed, he or she should investigate whether the supply section should be
replaced or redesigned to create a closer match of resistance levels to
produce higher levels of power to the load.

For the Norton equivalent circuit in Fig. 9.90, maximum power will
be delivered to the load when

(9.5)

This result [Eq. (9.5)] will be used to its fullest advantage in the analysis
of transistor networks, where the most frequently applied transistor
circuit model uses a current source rather than a voltage source.

For the Norton circuit in Fig. 9.90,

3Ry
PL = NIV

max 4

(W)

EXAMPLE 9.15 A dc generator, battery, and laboratory supply are
connected to resistive load R; in Fig. 9.91.

a. For each, determine the value of K; for maximum power transfer to K; .
b. Under maximum power conditions, what are the current level and
the power to the load for each configuration?

. What is the efficiency of operation for each supply in part (b)?

. If aload of 1k{) were applied to the laboratory supply, what would
the power delivered to the load be? Compare your answer to the
level of part (b). What is the level of efficiency?

. For each supply, determine the value of R; for 75% efficiency.







o

n%

R =250 Ry = 0.05 0

+ §RL §RL

+
E 2 Ea==_12V
(a) dc generator (b) Battery (c) Laboratory supply
FIG. 9.91
Example 9.15.
Solutions:

a. For the dc generator,

For the 12 V car battery,
Ry = Rp, =R, = 005Q
For the dc laboratory supply.
Ry = Rp, =Ry, = 200
For the dc generator,

E%, E2 (120 V)?

P =aR, AR, desny  TEW
For the 12 V car battery,
E%, E? (12 V)2
B = = = = 720 W
Lmx ™ 4Rpn ~ 4R, 4(0.05 Q)
For the dc laboratory supply,
E%, E? (40 V)2
Plow = 4Ry, 4R, 4(20Q) 20w

They are all operating under a S0% efficiency level because K; = Ry,
The power to the load is determined as follows:

£ 40V 40V
= — = - ')
=R R, 200+ 10000, 10204 e
and P, = IZR;, = (39.22 mA)X(1000 Q) = 1.54 W

The power level is significantly less than the 20 W achieved in
part (b). The efficiency level is

P 1.54 W 1.54 W
=L % 100% = —— % 100% = x 100%
P, ¢ El, “ 7 (40 V)(39.22 mA) ¢
1.54 W

- —_—— L& — (:'
157 W *x 100% 98.09 %




which is markedly higher than achieved under maximum power
conditions—albeit at the expense of the power level.
For the dc generator,

__ R
" Rp + R
Ky
= R
NRm + R) = Ry
Ry + Nk = Ry,

Ri(1 — m) = nRyp,

( in decimal form)

_k
TR

and ]

7Ry,

Ri=
L= e

Res 0.7525 Q)
b= £ 008 <

For the battery,

_ 0750005 Q)

LTI =075

For the laboratory supply.

07520 Q)

- — 60
LT B a

EXAMPLE 9,76 The analysis of 4 transistor network eesulted in the

]
| reducod equivalent in Fig 097
’( 10mA %, 4010 %",‘- v Fiod the toad resissance that will result m maximum power transfer

T 1o the Tooxd, snd Tind the s imum power delivored

= If the load were changad 1o 68 &4, woukd you expoct a fairly high
tevel of power transfer 10 the load based on the results of past (2)?
What weuld the new power level be? Is your mitial assumption
verified?

G 997
Ewamle 910

If the load were chunged to 8.2 k{1, would you expect o fmrdy high
[avel of power trunsfer 1o the load based on the results of pant (a)?

What would the new poewer level be! Is vour mmibia! assumplion
verified?

Solutions
v Replacing the carrent source by an open-vircalt squivalem resalis in
R = & = 3041

Restonng the current somrce und (inding the open-cireuit voktage o
the cutput seominals resoles in

[ V. IR, = (10 mAX30 KL = 400V
For maximum power transfer 1o the load,
R = Ry = HkQ
witha mauimum power level of
_En _ HOVF

— =W
4Rn  AH0OKL)




b. Yes. because the 68 k() load is greater (note Fig. Y.86) than the
40 k{2 load. but relatively close in magnitude.
Ep, 400V 400
b _ - = = 3.7mA
Ry + Ry 40kQ + 68k 108 k(2
P, =IiR, = (3.7 mAYX68 k) = 0.93 W

117 —

Yes, the power level of 0.93 W compared to the | W level of part
(a) verifies the assumption.
. No, 8.2 k(] is quite a bit less (note Fig. 9.86) than the 40 k() value.

B 400V 400V
- 40kQ + 82k 482k

= 8.3 mA

Yes, the power level of 0.57 W compared to the | W level of part (a)
verifies the assumption.




CHAPTER-05

AC CIRCUIT AND RESONANCE

Direct Current

Alternating Current

1
S
1 >

t—>

iT

L 4

{ —>

(1)

(2)
(3)
4)

D.C. always flow in one direction
and whose magnitude remains
constant.

High cost of production.

It is not possible by D.C. Because
D.C. is dangerous to the
transformer.

Its transmission cost is too high.

(1)

(2)
3
(4)

A.C.

iSs one which

periodically in

Low cost of production

reverse

direction and whose magnitude
undergoes a definite cycle changes
in definite intervals of time.

By using transformer A.C. voltage

can be decreased or increased.

A.C. can be transmitted to a long
distance economically.

Definition of A.C. terms :-
Cycle : It is one complete set of +ve and —ve values of alternating quality spread

over 3600 or 20 radan.

Time Period : It is defined as the time required to complete one cycle.
Frequency : It is defined as the reciprocal of time period. i.e. f=1/T

Or

It is defined as the number of cycles completed per second.
Amplitude : It is defined as the maximum value of either +ve half cycle or —ve

half cycle.

Phase : It is defined as the angular displacement between two haves is zero.




OR

Two alternating quantity are in vV

phase when each pass through their zero I

value at the same instant and also attain vl

their maximum value at the same instant in

a given cycle. il t—y
V =V sin wt =

I Sin Wt

Phase Difference :- It is defined as the angular displacement between two
alternating quantities.

OR
If the angular displacement between two waves are not zero, then that is known
as phase difference. i.e. at a particular time they attain unequal distance.

|

50— NS

OR
Two quantities are out of phase if they reach their maximum value or minimum
value at different times but always have an equal phase angle between them.
Here V = Vp sin wt
I = Iy sin (Wt-)
In this case current lags voltage by an angle ‘¢’.

Phasor Diagram :
Generation of Alternating emf :-
Consider a rectangular coil of “N” turns, area of cross-section is ‘A’ nt? is

placed in

x-axis in an uniform magnetic field of maximum flux density Bm web/nt?. The
coil is rotating in the magnetic field with a velocity of w radian / second. At time
t = 0, the coil is in x-axis. After interval of time “dt’ second the coil make rotating
in anti-clockwise direction and makes an angle ‘0’ with x-direction.
The perpendicular component of the magnetic field is ¢ = ¢n cos wt

According to Faraday’s Laws of electro-magnetic Induction



dt

=-N _(¢n
coswt) dt

=—N(-dnWecoswt)
= Nwn sin wt
= 2nfNonsin wi(Dw = 2nf) = 2nfNB,
Asinwt e = Epsinwt
Where En = 2nfNB, A f
—frequency in Hz
Bm— Maximum flux density in Wh/mt?
Now when 6 or wt = 90°
e=En
.e.  Em=2nfNBnA

Root Mean Square (R.M.S) Value :—
The r.m.s. value of an a.c. is defined by that steady (d.c.) current which when
flowing through a given circuit for a given time produces same heat as produced
by the alternating current when flowing through the same circuit for the same
time.

Sinuscdial alternating current is
I=Insinwt=1Iy,sinO
The mean of squares of the instantaneous values of current over one complete
cycle

:T i’.do
o (27 —0)
The square root of this value is



= \/?TG
d6 :\/'2”‘2 (L=cos®

2 2n

4o Q[(1_c0526)d6
\/7[9 smze]
4T[|[ 2 |jo

" _\/'mzzrj( o sin 4
“Van ) 2 Jl

TU ¢ 2
I

lrms = 2

Average Value :—
The average value of an alternating current is expressed by that steady current
(d.c.) which transfers across any circuit the same charge as it transferred by that
alternating current during the sae time.
The equation of the alternating currentis i =1y, sin 6
_j- i.do
o (1—0)

Iav

Iﬂd :—J.smf) df
0

| ~

2 [ cos@]; = Ly [— COSTT — (cosO“]
s

RS

|
= [1-0(-1)]




B 2xMaximum Current

lav T
Hence, l., = 0.637I,
The average value over a complete cycle is zero
Amplitude factor/ Peak factor/ Crest factor :- It is defined as the ratio of
maximum value to r.m.s value.
MaximumValue  I™
Ka = = b —1.414
RMS.Value o
2
Form factor : - It is defined as the ratio of r.m.s value to average value.
r.m.s.Value 0.7071™
Kf = = b —1.414
Average.Value 0.637In,

Kf=1.11

Phasor or Vector Representation of Alternating Quantity :—

N

An alternating current or voltage, (quantity) in a vector quantity which has
magnitude as well as direction. Let the alternating value of current be represented
by the equation e = Ey, Sin wt. The projection of E,, on Y-axis at any instant gives
the instantaneous value of alternating current. Since the instantaneous values are
continuously changing, so they are represented by a rotating vector or phasor. A
phasor is a vector rotating at a constant angular velocity

At tl,el = Emlsin Wit

At tz,ez = EmZSin wit,

Addition of two alternating Current :—
Let e; = Ensin wt

. E, N
g2 = Emsin(wt —d)

Y




The sum of two sine waves of the same frequency is another sine wave of
same frequency but of a different maximum value and Phase.

e :\[ef +6,2 + 2616, COSp
Phasor Algebra :—
A vector quantity can be expressed in terms of
(i)  Rectangular or Cartesian form
(i) Trigonometric form
(iii)  Exponential form

(iv) Polar form

E=a+jb

= E(cosB+ jsinB)
Where a = E cos O is the active part b=E
sin © is the reactive part

Ecose

0= tan‘1|{E |]=Phase angle
la)]
- o)
=-1(180°) j?
=-j(270°) j*
=1 (360°)

(i)  Rectangular for :-
E=a+jb tan@=b/a (il) Trigonometric form :-
E = E(cosB+ jsinB)
(ilf)  Exponential form :-
E = Ee*/®
(iv) Polar form :-

E=E/te (EYa+b?)



Addition or Subtration :-
Ei=ai+ jb:
E.=a,+ jb,

Eix Ex= (a1 + @) % (b +h:

&= tan-1||(| abu + +baz)||)

Multiplication : -
EixE;= (a1 + jau) £ (a1 + jby)

= (a1@2 —biby) + j(aia, +biby)
d= tan-1|||[ aaubaz+-bbuaba2)||)

Ei=Ei120;
E;= E,.0,
EixE,= EiEy 2¢1 +d2
Division :-
Ei=Ei26;
E;=E,.0,

E E=x6. E:
= = 201-02
E- E:x0: B2

A.C. through Pure Resistance : —
Let the resistance of R ohm is connected across to A.C supply of applied voltage

®©

& = Eo i WE o e e e oo 1) ¢ = Emsin Wt or v = Vmsin wi
Let ‘I’ is the instantaneous current .

Heree = IR

=i1=e/R



I =EmSinWt/R-=-ccceemeee - 2

By comparing equation (1) and equation (2) we get alternating voltage and
current in a pure resistive circuit are in phase

Instantaneous power is given by

P=el
= Emsinwt . I sinwt e = Emsin wt
= Em Im Sin® wt [ = Imsin wt
Enjm 2 T
= \/?.fg.(l —C0S 2Wt) T —>
Enm Im En Iy
P :\/E.\/E—\/E.\/E.COSZVW
ie. P=vm In Vo o cooont i e
= \/‘\/E — \/E \/E 2
E |
Vol
\/mE \/mE Where . is called constant part of power.
Y/% : \I/_E .cos2wt is called fluctuating part of power.
\/m|m
The fluctuating part .cos2wt of frequency double that of voltage and current
2

waves.
vV |

Hence power for the whole cycle is P = V2 V2. =Vl
|=> P = VI watts

A.C through Pure Inductance :—
Let inductance of ‘L’ henry is connected across the A.C. supply



across the inductance di
V=L _dt

di __is the rate of change of current
dt

di
Vpsinwt = L
dt
di  Vasinwt
dt L
Vm

= di = sinwt.dt L
Integrating both sides,
\/m

[ di= J L sinwt.dt
Vo coswt ) i

= |_
]
\ w)
V™ coswt |

wL
Vm
i =— coswt wL
Vo (m) i
= - sinjwt - _|

P

R
v = Vusin wt

V=VnSINWE === === o oo 1)
According to Faraday’s laws of electromagnetic inductance the emf induced

v = Vmsin wt

i=I_ sn(wt—x12)

AN

—rip—y T2



wk | 2 )
A [ T)
=- sinjwt — _| [OX. = 2nfL = wL]
Xooo| 2 )
Maximum value of i is

1= vm when sinljwt =™ Vis unity.

X, | 2 )
Hence the equation of current becomes i = Insin(wt —1t/2)
So we find that if applied voltage is rep[resented by v =V, sinwt , then current
flowing in a purely inductive circuit is given by i = Insin(wt —1/2)
Here current lags voltage by an angle /2 Radian.

Power factor =Cos ¢
= cos 90° Xt
=0 — U

Power Consumed = VI cos ¢ V
=VIx0
=0

Hence, the power consumed by a purely Inductive circuit is zero.

A.C. Through Pure Capacitance : —

i=1I_ sn(wt—xi2)
v = Vmsin wt

-O

@ iy TP

v = Vmsin wt

Let a capacitance of ‘C” farad is connected across the A.C. supply of applied
voltage v =VpSinWt-----oooomomoo oo (1)
Let ‘q’ = change on plates when p.d. between two plates of capacitor is ‘v’
q=cv

g = CVp sin wt

dqg d

=cC (Vm sin wt) dt

dt



I =cVpsin wt
= wcVpy cos wt
ym
=__  =coswt
1/ we
Vm 1 1
= = coswt [0 X.= — =—— isknown as capacitive reactance
Xc wc  2nfc
in ohm.]

= |, coswt

= Insin(wt +1U 2)
Here current leads the supply voltage by an angle n/2 radian.

Power factor =Cos ¢
=c0s90° =0

Power Consumed = VI cos ¢
=VIx0 =0

The power consumed by a pure capacitive circuit is zero.
A.C. Through R-L Series Circuit : —

L
" (00000 ___
W
+— Vg ¥ VL —>
S~
N/

e=E_sn wt

The resistance of R-ohm and inductance of L-henry are connected in series across
the A.C. supply of applied voltage e = Ensin Wt ----------=---enoemmememeeee- 1)

V=Ve+ Vi

- M =tan
R L |

= IR +(IX()2 24 =tan"!| LH
IR

- |\/R’?TXT‘4¢ :tan‘l{t;} Vi=IXe

(R)

i)
|

Vr=IR



V= 1Z24=tan!| X[ R)
Where Z = R2+ X,2

=R + jX.is known as impedance of R-L series Circuit.

\Y E™sin wt
| = =

Z:P Z:0
I = Insin(wt —¢)

Here current lags the supply voltage by an angle ¢.
Power Factor :— It is the cosine of the angle between the voltage and current.

OR
It is the ratio of active power to apparent power.
OR
It is the ratio of resistance to inpedence .
Power :—
= V.
=V sin Wt. I sin(wt — )
=Vnlnsin wt.sin(wt —¢)
1
2
=1 Vnln2sin wt.sin(wt —¢)
=_Vnln[cosd-cos2(wt — )]
2
Obviously the power consists of two parts.
1
(i) a constant part _Valncosd which contributes to real power.
2
1
(i)  apulsating component _Valncos(2wt —¢) which has a frequency twice
2

that of the voltage and current. It does not contribute to actual power since its
average value over a complete cycle is zero.

Hence average power consumed
1

=5lemcosd)
A

=\/E \/E cosdp
=VI coso



Where V & | represents the r.m.s value.
A.C. Through R-C Series Circuit : —»
The resistance of ‘R’-ohm and capacitance of ‘C’ farad is connected across the
A.C. supply of applied voltage

€ = B I W 1)
R €
A'A'A'A' : :
< VR 3k Ve >
L d
Ny
V =V + (- jVe)
= IR+ (- jIXc)
= I(R - jX ¢)
V=1zZ
Where Z ¢ VR® 41X =R-jX =is known as impedance of R-C series
Circuit. c

Z=R- VR 4X." X

— = = sin(wt +¢)
£ z
= | = Insin(wt +¢)

Here current leads the supply voltage by an angle ‘¢’.



A.C. Through R-L-C Series Circuit : —
Let a resistance of ‘R’-ohm inductance of ‘L’ henry and a capacitance of ‘C’ farad
are connected across the A.C. supply in series of applied voltage

L
R C

— V= V=YV —y
D
)
e=E_un wi
€ =EmSINWt - == - m e e e oo - (1)
e =VR +V|_ +VC
=Vr + jVL - ch

=Vr+ j(VL-Vc)

= |R+j(|X|_— |Xc)
=I[R+j(X L= Xc)]

=1 Rz\/l- (XL = Xc)2 z+b= tan-q| X1-Xc)
LR
=1Z.+¢

Where Z = | RZ\/I- (XL = Xc)? is known as the impedance of R-L-C Series

Circuit.
If X > X, then the angle is +ve.

If X < X ¢, then the angle is -ve.

Impedance is defined as the phasor sum of resistance and net reactance e
=1Z,.%x¢
e E™sin wt
= 1= Z.+xdp = = Insin(wt o)
Z:+d Z:+0
(1) IfX.> X, then P.f will be lagging.

(2) If X< Xc, then, P.fwill be leading.



(3) IfX.=Xc, then, the circuit will be resistive one. The p.f. becomes unity
and the resonance occurs.

REASONANCE
_It is defined as the resonance in electrical circuit having passive or active
elements represents a particular state when the current and the voltage in the
circuit is maximum and minimum with respect to the magnitude of excitation at
a particular frequency and the impedances being either minimum or maximum
at unity power factor
Resonance are classified into two types.

(1)  Series Resonance
(2) Parallel Resonance

(1) Series Resonance :- Let a resistance of ‘R’ ohm, inductance of ‘L’
henry and capacitance of ‘C’ farad are connected in series across A.C. supply

e = Ensin wt

The impedance of the circuit
Z=R+jX.L-Xc)]

z R+ (XL = Xo)?

The condition of series resonance:
The resonance will occur when the reactive part of the line current is zero The
p.f. becomes unity.
The net reactance will be zero.
The current becomes maximum.
At resonance net reactance is zero

XL-Xc=0

= X.=Xc¢

1

=>W,L =
W,C



=>Woe=__1
LC
1
=>Wy= —
TS
1
= 2nf, = \/E
1
=f, = zn\/E
1 1
Resonant frequency (fo)=_ ..
2n¥C
Impedance at Resonance
Zo =R
Current at Resonance
Y,
lo= _
R
Power factor at resonance
R R
pf.= = =1 [0Z.=R]
Z, R

Resonance Curve :-

Unity p.f.(u.p.f)

fo

At low frequency the X. is greater and the circuit behaves leading and
at high frequency the X, becomes high and the circuit behaves lagging

circuit.
If the resistance will be low the curve will be stiff (peak).



« If the resistance will go oh increasing the current goes on decreasing and the
curve become flat.
Band Width :—
At point ‘A’ the power loss is I£R.
The frequency is fo which is at resonance.
2R
At point ‘B’ the power lossis __

The power loss is 50% of the power loss
at point A

Io
CA,B/ / \
B H

Hence the frequencies
corresponding to point ‘B’ is known as half power frequencies f; & f.
f; = Lower half power frequency
R
fi=fo—
4nL
F, = Upper half power frequency
R
fz = fo +
4mL
Band width (B.W.) is defined as the difference between upper half power
frequency ad lower half power frequency.

R
BW.=f,-fi=
2nL
Selectivity : —
Selectivity is defined as the ratio of Band width to resonant frequency
B.W. R R
Selectivity=_ = Selectivity =__

fo 2nik 2nfoL



Quiality Factor (Q-factor) :—
It is defined as the ratio of 2 x Maximum energy stored to energy dissipated per
cycle

onx 412 Q-factor
2%

|RT
)

nL( 2I)

| RT niL.21?
= 2
I RT
mL.21 2
= 2
I RT
2mL.

RT

2nf L.
Quality factor = =
____°R

[I10="1_1 =%

Quality factor is defined as the reciprocal of power factor.
1.

factor= =——
Q COSd)

It is the reciprocal of selectivity.

Voltage across Inductor.
Q-factor Or Magnification factor =

Voltage across resistor

Jox L

2rfol WoL
==RR




W L
Q- factor = =
° R

Voltage across Capacotor.

Q-factor factor =
Voltage across resistor

|9XL3
IR
XC
R
1 1
2T[foc 2T[foCR
1
Q-factor =
W,CR
2 WoL 1
Q_: X
R  W,CR
1
Q =—
R2C
/_1
Q= R2C
1 /L
Q= RVC

Graphical Method :—
(1) Resistance is independent of frequency It represents a straight line.

(2) Inductive Reactance X = 2nfL



It is directly proportional to frequency. As the frequency increases , X, increases
1
(3) Capacitive Reactance Xc ==
2nfC

XL

f ——>

It is inversely proportional to frequency. As the frequency increases, Xc
decreases.
When frequency increases, X, increases and Xc decreases from the higher
value.

XL Xt

-00

W
-Xc

At a certain frequency. X.= Xc¢
That particular frequency is known as Resonant frequency.
Variation of circuit parameter in series resonance:




(2) Parallel Resonance :- Resonance will occur when the reactive part of

the line current is zero.

N
At resonance,
|c—||_Sind):0
|C :lLSind)
:Lz%sinq;
Xe  R® 4+ X,
:Lz zV > X zXI: 2 .
Xe R + XL JR + XL ILcos ¢
¢
B B T mld,\
I Xc
R2+ XL

= R? + X|_2: XL Xc

2 1
=/7= XL.Xc:WoLXW oC
2

L
Z=_C
= R2+ Xee= L
C
2 2L
=R+ (2nfeL) = _C

= R2+ 4mefel= LC

= 4mefeelo= L — R2
C

= foo = 2122=(| L = Ry
4 foL LC Jz

Nes




1 1 R
= fo= -2
2nLC L

fo = Resonant frequency in parallel circuit.

Current at Resonance = I_cos¢

v R
JR2 X2 VRE 4 X/
- R
=2 2
R+ XL
VR
= 2
z
VRV
L/IC L/RC
Y,

Dynamic  Impedence

L /RC — Dynamic Impedance of the circuit. or, dynamic impedances is defined as
the impedance at resonance frequency in parallel circuit.

Parallel Circuit :—

L R :
YN (1] '] )

e
Ry

The parallel resonance condition:

When the reactive part of the line current is zero.
The net reactance is zero.

The line current will be minimum.

The power factor will be unity

Impedance Z;= R+ jX.

Zz= Rz—ch



1 1
Admittance Y.= — =
Zi Ri+ Xt

(Ri+ jX1)

(Ri+ X )R- jX )

Ri+ jXu
= 2
Ri+ XL
R XL
Yi= 2 2—] 2 2
Ri+ XuL Ri+ XuL
1 1
Admittance Y= —=
2
Z> Ri+jXc
(R2+ jX¢)

(R2:- jXc)(Ra+ jX¢)

Rz + XL

Rz Xc
2 Ra+ Xe2 Ry + X2

Total Admittance Admittance (| 19| =4+ 1—

\z) z Z,
=Y =Y +Y> Ri+ XL R2+ Xc
X
Rl XL R2 . X, Xc
A +170

=YY= 2—] 2 2+ 2 2 2 2 = =

Ri+ XL Ri+ XL Rz + X2 R + X2
=>Y= 2R1 2+ 2RZ22-

Ri+ X1 Ro+ X =>X(R2+X2)=X(R2+X

R+ Xc R+ Xc

At Resonance,
XL Xc

2 2— 2 2=0




ifl] RizX+ X 12 = ReeX+cX c2 ||} )
2
\

= 2rfL||((R22 + 4rm.1f 2.C2))||= 2n1fC (Rlz + 4ref 2L2)

2 L Ri2  2mfl?
= 2nfLR, + 2= +
2nfC  2nfC C
L R: 2nfl.

= ,— 1= -2nfLR2
2nfC  2nfC C
1(L
=" | =Re)|=2nfL(| _L - Rz]|
2nfcC (C ) C )
L
_—-Rt L-CR:

= 4?f2C =L R2=L - CRu

— 2

C
1(L-CR?)

- 4ruf 2= LC ||l L—CRuz

1 (L-CR:2)

=f2= 2 ||L-CRul|
4t ———

1 [(L-CR3)

i ¥ WliL-crl|

2n IC 2)



1 ( L-CR:2 )
= f = 2r ||| Lo=C - LCwzR2||)

f is called Resonant frequency.
IfR*=0
Then 7= 1 [L-CR’

22\ I’C
1 [L-CR’
27l C

1 (L

= Rl
24\ C
1 [ L R’

“a\Ne 12

1 /L_Rlz
' 2z\NLC 1P

If R, and R, = 0, then

2

) 1 L
fﬁzn— I’C
PN R
: 2 NLC 274 LC

Comparison of Series and Parallel Resonant Circuit :—

ltem Series ¢kt (R-L-C) | parallel ckt (R- L and
C)
&R Impedance at Resonance Minimum Maximum
& Current at Resonance \ \
Maximum= _R

Minimum= (L /CR)
R Effective Impedance R L
CR
a® P.f. at Resonance Unity Unity

&R Resonant Frequency 1 1] R
Zﬁ LC . -2 2n LC




R It Magnifies Voltage Current
&R Magpnification factor WL WL
R R

Parallel circuit :—

L

+1 il Ra- ¢ .
&~ :
AN

v.f

Zl :R1+jX|_ ZVRQL2 +XL24¢1
ZZ =Rl_jXC :VR212 +XC24 —d)z

| - V =V_L _d) :I ya —d)

1 1 1 1
Zi, b1 4y

\Y

Where _ =vY,;
Zy

Here Y; — Admittance of the circuit

Admittance is defined as the reciprocal of impedence.

\Y




I =\/I12 +1,2 42111, cos(dh +d»)
|=|14 —¢1+|24¢2
A 'Itq.-i“¢-;

The resultant current “I” 1s the vector sum of the branch currents I; & |2
can be found by using parallelogram low of vectors or resolving I, into their X —



and Y- components (or active and reactive components respectively) and then by
combining these components.

Sum of active components of I; and 12 = I3 cos ¢1+ 12 cos &
Sum of the reactive components of I; and I, = I, sin &2 - 11 sin ¢1

EXP -01:
A 60Hz voltage of 230 V effective value is impressed on an inductance of
0.265H

(i)  Write the time equation for the voltage and the resulting current. Let the
zero axis of the voltage wave be at t = 0.

(i)  Show the voltage and current on a phasor diagram.
(ili)  Find the maximum energy stored in the inductance.
Solution :-

Vinax =*/2_v = 2F><230v

f=60Hz, W = 2nf = 2nx60 = 377rad /s. Xi= Wl =
377 x 0.265 = 100Q .
(i)  The time equation for voltage is V(t) = 230 2 sin377t.

Imax =Vimax/ X1 = 230 2 /100. E/_2.3 3 o= 91?{;(Iag).
[ICurrente quation is.
i(t) = 2.325sin(377t - 1/ 2)
or = 2.3'2cos377t

(i) It | | r

(i) Or Emax=2 LI?px =2x0.265%(2.3 2)?=1.4]

Example -02 :

The potential difference measured across a coil is 4.5 v, when it carries a direct
current of 9 A. The same coil when carries an alternating current of 9A at 25 Hz,
the potential difference is 24 v. Find the power and the power factor when it is
supplied by 50 v, 50 Hz supply.

Solution:

Let R be the d.c. resistance and L be inductance of the coil.
R=V/I=45/9 =050




With a.c. current of 25Hz, z = V/1.
24

9 =2.660
x|£/22— R2 = 2./662— 0.5?

= 2.620
Xi = 2nx25xL
xi= 0.0167Q

At 50Hz
Xi=2.62%x2 =5.24Q

Z 20.5% +5.242
=5.06Q
| =50/5.26 =95 A
P=1%R =9.5%x 0.5 = 45 watt.
Example — 03 :

A 50- uf capacitor is connected across a 230-v, 50 — Hz supply. Calculate
(@)  The reactance offered by the capacitor.

(b)  The maximum current and

(¢)  Ther.m.s value of the current drawn by the capacitor.
Solution :

1 1 1
(a) X= = = 6= 63.6Q
wc 2mnfe 2nx50x50x10
(c)  Since 230 v represents the r.m.s value
(s = 230/ x, = 230/63.6 = 3.62A

(B) o= lmex 2= 362k 2= 5114

Example — 04 :
In a particular R — L series circuit a voltage of 10v at 50 Hz produces a current
of 700 mA. What are the values of R and L in the circuit ? Solution :

(D Z=\/I-<‘ F(2TTx500)2

=R? + 9869612

V =1z
10 = 700><10‘\7/(R2 +98696L2)

V

(R?+ 98696L%) =10/ 700x10-2=100/ 7

R?+98696L2=10000/49 ()



(i) In the second case 7R +(2nx 75L)2

110 = 500x10‘3‘422+ 222066L2) = 20

R2 +222066L2) = 20



CHAPTER-07
TRANSIENTS

Whenever a network containing energy storage elements such as inductor or capacitor is
switched from one condition to another,either by change in applied source or change in
network elements,the response current and voltage change from one state to the other
state.The time taken to change from an initial steady state to the final steady state is known
as the transient period.This response is known as transient response or transients.The
response of the network after it attains a final steady value is independent of time and is
called the steady-state response.The complete response of the network is determined with
the help of a differential equation.

STEADY STATE AND TRANSIENT RESPONSE

In a network containing energy storage elements, with change in excitation, the currents
and voltages in the circuit change from one state to other state. The behaviour of the
voltage or current when it is changed from one state to another is called the transient state.
The time taken for the circuit to change from one steady state to another steady state is
called the transient time. The application of KVL and KCL to circuits containing energy
storage elements results in differential, rather than algebraic equations. when we consider
a circuit containing storage elements which are independent of the sources, the response
depends upon the nature of the circuit and is called natural response. Storage elements
deliver their energy to the resistances. Hence, the response changes, gets saturated after
some time,and is referred to as the transient response. When we consider a source acting
on a circuit, the response depends on the nature of the source or sources.This response is
called forced response. In other words,the complete response of a circuit consists of two
parts; the forced response and the transient response. When we consider a differential
equation, the complete solution consists of two parts: the complementary function and the
particular solution. The complementary function dies out after short interval, and is referred
to as the transient response or source free response. The particular solution is the steady
state response, or the forced response. The first step in finding the complete solution of a
circuit is to form a differential equation for the circuit. By obtaining the differential
equation, several methods can be used to find out the complete solution.

DC RESPONSE OF AN R-L CIRCUIT

Consider a circuit consisting of a resistance and inductance as shown in figure.The inductor in
the circuit is initially uncharged and is in series with the resistor.When the switch S is closed
,we can find the complete solution for the current.Application of kirchoff’s voltage law to the
circuit results in the following differential equation.
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Figure 1.1
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In the above equation, the current | is the solution to be found and V is the applied constant
voltage. The voltage V is applied to the circuit only when the switch S is closed. The above equation
is a linear differential equation of first order.comparing it with a non-homogenious differential
equation

Hence,i =cC 2 1.5

To determine the value of c in equation c, we use the initial conditions .In the circuit shown in
Fig.1.1, the switch s is closed at t=0.at t=0-,i.e. just before closing the switch s, the current in the
inductor is zero. Since the inductor does not allow sudden changes in currents, at t=o+ just after
the switch is closed,the current remains zero.

Thusatt=0,i=0

Substituting the above condition in equation c, we have
O=c+ &
Substituting the value of ¢ in equation c, we get

—_—
b

v v T

. — g L
1=r R -
W —RE

- L
1= g (1-'E )

i=io (1- € L ) (where o= 73!

|
B

EE = Ti meband =
i= 7 (- ) (where * ~ T'm@wnsm"w_&) ...................................................... 1.6
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Figure 1.2

=it
Equation d consists of two parts, the steady state part ¢z =V/R) and the transient part ‘¢ ¢ & .

When switch S is closed , the response reaches a steady state value after a time interval as
shown in figure 1.2.

Here the transition period is defined as the time taken for the current to reach its final
or stedy state value from its initial value.In the transient part of the solution, the
quantity L/R is important in describing the curve since L/R is the time period required

for the current to reach its initial value of zero to the final value ‘¢ =V/R. The time
=Az

constant of a function “c € ¢ is the time at which the exponent of e is unity, where e
is the base of the natural logarithms.The term L/R is called the time constant and is
denoted by t.

L
So, T= sec

R

Hence, the transient part of the solution is

-
hh

=

.~|

o ol=

alk

. e
i=

==

At one Time constant, the transient term reaches 36.8 percent of its initial value.

-1

= ]
1

i(t) = TR 0368
Similarly,
i(21)=-%“'_: - 0135%
iGg-a" - :

0.0498



T
¥ -F

=&
i(51t)=-& =- =
0.0067
After 5 TC the transient part reaches more than 99 percent of its final value.

In figure A we can find out the voltages and powers across each element by using the current.

Voltage across the resistor is

]
)

] -

M - @i
v==Ri=R . (I" %)

=

Hence, VA=V (1-¢1i)

L3

Similarly, the voltage across the inductance is

The responses are shown in Figure 1.3.

Figure 1.3

Power in the resistor is

v . i1 . i\ 7]
Fe=1zi=V(1-¢7 ){(1=- &1 J K

w2
L

] - -y

_—(1- 28 )4 €T

|-_|

Power in the inductor is



The responses are shown in figure 1.4 .

F
2
R
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Figure 1.4
Problem: 1.1
VA
80V T g g‘
Figure 1.5

A series R-L circuit with R =30Q and L = 15 H has a constant voltage V = 50 V applied at t=0 as
shown in Fig. 1.5 . determine the current i, the voltage across resistor and across inductor.
Solution:

By applying Kirchoff's voltage Law, we get

&i
15 +30i =60
ot
=1 a
T odr +2i=4
The general solution for alinear differential equation is

_ Bt gmR [ FgRt
1=CE + B8 __l ke dt



where P=2,K=4

putting the values

i:CE—:r: + E—':': ._f ELE_,'.":'dt

== i:Ce_:: + 2

At t=0, the switch s is closed.

Since the inductor never allows sudden change in currents. At t=U7 the current in the circuit is
zero. Therefore at t=07,i =0

=20=c+2

Substituting the value of c in the current equation, we have

i=2(1- &™) A voltage across resistor () =iR =2(1- ) x

1 —Ti — i

30=60(1- v Vi e e

. V) =LE =15 x S2(1- e ) = 30x 26~ y=$0s~%
voltage across inductor ( dt de

DC RESPONSE OF AN R-C CIRCUIT

Consider a circuit consisting of a resistance and capacitance as shown in figure.The capacitor in the
circuit is initially uncharged and is in series with the resistor.When the switch S is closed at t=0, we
can find the complete solution for the current.Application of kirchoff’s voltage law to the circuit
results in the following differential equation.

. £
o ' My

i)

=

Figure 1.6

] 1
VoRi4Zdidt 17

By differentiating the above equation, we get



i

Pn.lﬂ.

O = R e it 1.8
Or

a1

dr+RCi=O ................................................ 1.9

Equation cis a linear differential equation with only the complementary function. The particular
solution for the above equation is zero. The solution for this type of differential equation is

L
b

1= C 8 RL e 1.10

To determine the value of c in equation c, we use the initial conditions .In the circuit shown in
Fig. the switch s is closed at t=0. Since the capacitor does not allow sudden changes in voltage, it
will act as a short circuit at t=o+ just after the switch is closed.

So the current in the circuit at t = 0+ is =

Thus at t =0, the currenti=

Substituting the above condition in equation c, we have

r=C

Substituting the value of ¢ in equation c, we get

Figure 1.7

When switch Sis closed , the response decays as shown in figurre.

The term RC is called the time constant and is denoted by t .



So, T =RC sec
After 5 TC the curve reaches 99 percent of its final value.

In figure A we can find out the voltage across each element by using the current equation.

Voltage across the resistor is

Hence, ¥==V 3¢

Similarly, voltage across the capacitor is

=- +C

=-V &R +C

At t=0,voltage across capacitor is zero
So,c=V

And
Iﬁ :'V{L - Eﬁ?h

The responses are shown in Figure1.8.

o g

2 3 4 5 & 710
Figure 1.8

Power in the resistor is



Power in the capacitor is

-_i_‘l ¥ I
. eRC) _ eng
Fe=vci= V(1- &

i i ozE
_— (¢FC.eRC

)

The responses are shown in figure 1.9.

P

2l

Figure 1.9
Problem: 1.2

A series R-C circuit with R =100 and C=0.1 F has a constant voltage V = 20 V applied at t=0 as
shown in Fig. determine the current i, the voltage across resistor and across capacitor.

-

il

0V | ' =01 F

Figure 1.10
Solution :

By applying Kirchoff's voltage Law, we get
[1dt

1
10i + w1” =20

Differentiating w.r.t. t we get



L di
ge+i=0

The solution for above equation is
i=ce™"
At t=0, the switch s is closed.

Since the capacitor never allows sudden change in voltages. At t=0""the current in the circuit is
i=V/R=20/10=2A

. Thereforeatt=0,i=2 A

m i the current equation is i=2#~" voltage across

resistor (V&) =iR =2 e ¥x 10=20 e % v

=

voltage across capacitor ( V¢) = vil— efc). 20(1-e") V

DC RESPONSE OF AN R-L-C CIRCUIT

Consider a circuit consisting of a resistance, inductance and capacitance as shown in figure.The
capacitor and inductor in the circuit is initially uncharged and are in series with the resistor.When
the switch S is closed at t=0, we can find the complete solution for the current.Application of
kirchoff’s voltage law to the circuit results in the following differential equation.

. G

i~ -c

Figure 1.11



d:fr’d?: +EE+ i

o Lt LOT=0uiiiiiiiiiecciee et 1.14
The above equation c is a second order linear differential equation with only the complementary
function. The particular solution for the above equation is zero. The characteristics equation for this
type of differential equation is

LI
0,b, - % 'E_ -1
YERE i*, T Y

- Ky=" and K-= _‘[:_""[7 -

By assuming 2L WAL Lt

.El--l =.F‘:’-1 T K-: and .D: :Kj - K_
Here &~ may be positive,negative or zero .

) f gy 8 1
K ix Pusitive [ﬂiT s =
Casel: 24 Le

Then , the roots are Real and Unequal and give an over damped Response as shown in figure
1.12.

The solution for the above equation is: i= & R 4 () gl

A

Figure 1.12

o ‘B2
K; is Negative [—T =

pr &€

1

Casell:

Then, the roots are Complex Conjugate, and give an under-damped Response as shown in
figure 1.13.



:.T N M
Figure 1.1?; |

The solution for the above equation is: i = & = (G cosKgt +C; sinK;t)

P 4
K.is Zere [11 = —
- 2E4 Lo

Caselll :

Then, the roots are Equal and give an Critically-damped Response as shown in figure 1.14.

i_f

Figure 1.14
E o %
The solution for the above equation is: i= ePeFiCy + Cot)

Problem: 1.3

A series R-L-C circuit with R =20Q, L =0.05H and C = 20 pF has a constant voltage V=100V
applied at t=0 as shown in Fig. determine the transient currenti .

L 3005H
100 V 5

i |

C= 20 uF

i

Figure 1.15

Solution :

By applying Kirchoff’s voltage Law, we get



l1 L
IR Tl Lde

i
+ —_
100=30i 0.05 n‘r+

Differentiating w.r.t. t we get

1
20 107F § =)

O dt
D05c=:/de= 420 F+

== gogfar? +400 = + 105,
dt i=0

=2 (0% + 200D +107) =0

The roots of equation are

_————

L T
D, D =-;i«;E I =10

= F

=200ty 1200} =10

01 =_200+j979.8
£2=.200-j979.8

Therefore the current

j =& [C) cosKy £+ C; ook, 2]

| =8 29F[C) cos979.6¢ + G #n 979.80] 5

At t=0, the switch s is closed.

Since the inductor never allows sudden change in currents. At t=07 the current in the circuit is
zero. Therefore at t=07,1 =0

=2 i=0=(1)[C coz 0+ C; #in 0]
= G-0andi =E'-:EI:T[':Q gin 979.6¢ ] A

Differentiating w.r.t. t we get

1 - -
i C; (672009798 09798 ¢ + o~ 200 (= 200080 979.8¢ ]
At t=0, the voltage across the inductoris 100 V

- at
= L— -
d¢t =100 or &t = 2000

At t=0, F =2000=C2979.8 cozd



_ 2000
ITsen =2.04

The current equation is

j=e ™22 0dain 979.88) 4

ANALYSIS OF CIRCUITS USING LAPLACE TRANSFORM
TECHNIQUE

The Laplace transform is a powerful Analytical Technique that is widely used to study the
behavior of Linear,Lumped parameter circuits. Laplace Transform converts a time domain
function f(t) to a frequency domain function F(s) and also Inverse Laplace transformation
converts the frequency domain function F(s) back to a time domain function f(t).

L{ (O} = F(S) =mae® ™ £() Qlerrrrrrreooesseeeoeeeee oo LT 1

1
_ . ,l_c Fig) o=
I~ {F(s)} = f(t) =2 S oo eeeeee e e LT 2

DC RESPONSE OF AN R-L CIRCUIT (LT Method)

Let us determine the solution i of the first order differential equation given by equation A which
is for the DC response of a R-L Circuit under the zero initial condition i.e. current is zero, i=0 at
t=07 and hence i=0 at t=@7 in the circuit in figure A by the property of Inductance not allowing
the current to change as switch is closed at t=0.

e 8,
BRI

Figure LT 1.1

I +

ai
V=RiHLAE e e LT1.1

Taking the Laplace Transform of bothe sides we get,

=RI(S) + L[ SI(S) =I(0) J.eeeiiureeeiiiiiiii e LT1.2

=



‘7 =R I(s)+L[sI(s)] (1(0) =0 : zero initial current)

Taking the Laplace Inverse Transform of both sides we get,

=2 FHi(s)} = 40 = )
_-1{

i(t) = sLaf ‘"“]} ( Dividing the numerator and denominator by L) putting

w=H/L we get

: P11 1
L_l ¥ T :.E..-1 =(== = ,.]_
- T e
¥ o1 Y
, (5 (TFRE} B - - )
i(t) = \J=E/L1T &Y (again putting back the value of &
e 1- eT) =1, (1- ¢ T
i(t=" {E(E (TR Tan ) _( e s ] (1- T ) (where fe=3

I, (1- e%) (where T = Ttmeconstant= L
A

i(9)=

It can be observed that solution for i(t) as obtained by Laplace Transform technique is same as
that obtained by standard differential method .

DC RESPONSE OF AN R-C CIRCUIT(L.T.Method)

Similarly ,

Let us determine the solution i of the first order differential equation given by equation A which
is for the DC response of a R-C Circuit under the zero initial condition i.e. voltage across
capacitor is zero, "= =0 att= anchlence =0 att= in the circuit in figure A by
the property of capacitance not allowing the voltage across it to change as switch is closed at
t=0.

[ =

(¥

Figure LT 1.2



Taking the Laplace Transform of both sides we get,

v 1 ]I: Y
S S (T A (1) PSS LT 1.6
=% =RIGS)+f * ] (1(0) =0 : zero initial charge )

¥ L Soatl
TF =R+ =T IEITET

I(S) _ Ef Cs B FC
=3 =T TEED [ LT 1.7

Taking the Laplace Inverse Transform of both sides we get,

== EHj(s)) = #e) = LY =y

[ ECEa

il
R 'F_‘?‘E-_T]
i(t) = “"RCl  ( Dividing the numerator and denominator by RC )
o= i
putting rC we get

[ =

—1 (e 4|
(=" {5

Vv —r
— g F
R

¥ aRE .,
i(t) =+ . ( putting back the value of *

i(t) =lo €T (where I, = [ LT 1.8
i(t)=1- E‘?) (where T=Timeconstant= R(C)

It can be observed that solution for i(t) as obtained by Laplace Transform technique in q is
same as that obtained by standard differential method in d.

DC RESPONSE OF AN R-L-C CIRCUIT ( L.T. Method)

<" ¢

Figure LT 1.3

Similarly ,



Let us determine the solution i of the first order differential equation given by equation A which
is for the DC response of a R-L-C Circuit under the zero initial condition i.e. the switch s is
closed at t=0.at t=0-,i.e. just before closing the switch s, the current in the inductor is zero.
Since the inductor does not allow sudden changes in currents, at t=o+ just after the switch is
closed,the current remains zero. also the voltage across capacitor is zero i.e. ¥z =0 at t=0"and
hence ¥: =0 at t=0% in the circuit in figure by the property of capacitance not allowing the
voltage across it ¥z to suddenly change as switch is closed at t=0.

Taking the Laplace Transform of both sides we get,

,=RI(s) ++ L [sI(s) -1(0) ]+ [% ’— oS (1) 1 LT 1.10

¥ s 1 X g £ oy T
== _ Lleligl]+=1 = [0} = Q:zero initial current
5 RIS+ [ 1 L & 1(0) =0 : zero initial

charge)

¥ 1 LS 2Rrs41
=F IR T Z] =160 o)

. v cs ve
“I(s) = -[ LCFRRCaSL) = CaaRras 1) LT 1.11

Taking the Laplace Inverse Transform of both sides we get,
i3

=x ()} = HE) L-i{:—..c-‘--ﬁa:--l }
i()=L ¥ v ( Dividing the numerator and denominator by LC )
T ECT L
L T .3
0= 5 e
w=E ond m- 0 uttin we get
2 =.ic buting g

iy L™ [_;_-vm.]}

The denominator polynomial becomes = [#2 -2 %5 -I- w=]

. I
=2 S - ey = -} -
S .53 =+‘“" ==HIVET—w =—EtfF  where,
bl 1 Iy 2
H=—; w= j— and = yE==—g* where,
2L &

By partial Fraction expansion, of I(s),

I(s) = 3% * 55



A= (8=5) KD s

B=
T _z
=B} ~— (BB
= 1;._'
T 11
550 Uams (smsar
I(s)
Taking the Inverse Laplace Transform
i(t) = By ey AgedF
Where 41 dad are constants to be determined &nd an< aren the roots of the

equation.

Now depending upon the values of “1and =~ , we have three cases of the response.

CASE I : When the roots are Real and Unequal, it gives an over-damped response.

= = = or £
- VEC ; In this case, the solution is given by
- [ Be 5 =Gt
i) =F "l e AT LT 1.12
ey _ g gty Aoedtd .
or i(t)="4 + fort &0

CASE II : When the roots are Real and Equal, it gives an Critically-damped response.

B I'I
i WEC or = ;Inthis case, the solution is given by
or
: —_ S-- HE h f"&"' t o
i(t) = (328 ) fort® 0 e LT 1.13

CASE III : When the roots are Complex Conjugate, it gives an under-damped response.

i w& or o < w ;Inthis case, the solution is given by
i(9) =54 8+ & fore® 0

e A
maTy el - —_r f ey S,
5§ =——————— - TEIVETTW yhere,

ver—? AT - o wg Let where j= V~1 andws=vu" —x*



i) =f" [+ Adcosmgt +] (% —Ag)sinagt ]

i(t) =¢~"*(By coswmgt +Bgsin wyt)
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CHAPTER 8

TWO-PORT NETWORKS

One-Port
—> Network

+hV
-—

a) One port network is a two terminal electrical network in which, current
enters through one terminal and leaves through another terminal. Resistors,
inductors and capacitors are the examples of one port network because each
one has two terminals. One port network representation is shown in the
following figure.

b) A pair of terminals at which a signal (voltage or current) may enter or leave is
called a port.

c) Anetwork having only one such pair of terminals is called a one-port network.

d) No connections may be made to any other nodes internal to the network.

e) By KCL, we therefore haveii=i1

- —> < T *
+ +
" Two-Port
Network v
<« |- i'>—»

= two port network is a pair of two terminal electrical network in which, current
enters through one terminal and leaves through another terminal of each port. Two
port network representation is shown in the following figure.Type equation here.

= Two-port networks are used to describe the relationship between a pair of
terminals

= The analysis methods we will discuss require the following conditions be
met

1. Linearity
2. No independent sources inside the network

3. No stored energy inside the network (zero initial conditions)

4.i1=i1and i2=1
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Two Port Network Parameters

There are various parameters needed to analyze a two port
network. For examples, , Y parameters,

, & parameters, etc.
Let us discuss these network parameters one by one to gain a
better understanding of their application and uses.

Impedance Parameters

= Suppose the currents and voltages can be measured.

= Alternatively, if the circuit in the box is known,V1and V2 can be calculated
based on circuit analysis.

= Relationship can be written in terms of the impedance parameters.

=  We can also calculate the impedance parameters after making two sets of
measurements.

Vi=z11l1+z1212

V2=z21l1+222l2
If the right port is an open circuit (/2=0), then we can easily solve for two of

the impedance parameters: Similarly by open circuiting left hand port (I1=0) we can solve
for the other two parameters.

1 . ) l \
Zy = forwardtransferimpedence =—=
L=0 ™ 1

h

£y, = inputimpedence =~

=0

W RN, .
, = Teversetransferimpedence = —”11 =0 Z, =outputimpedence = ]_"11 =)
1

"

Z

l

Impedance Parameter Equivalent
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https://www.electrical4u.com/impedance-parameter-or-z-parameter/
https://www.electrical4u.com/impedance-parameter-or-z-parameter/
https://www.electrical4u.com/impedance-parameter-or-z-parameter/
https://www.electrical4u.com/admittance-parameters-or-y-parameters/
https://www.electrical4u.com/admittance-parameters-or-y-parameters/
https://www.electrical4u.com/admittance-parameters-or-y-parameters/
https://www.electrical4u.com/hybrid-parameters-or-h-parameters/
https://www.electrical4u.com/hybrid-parameters-or-h-parameters/
https://www.electrical4u.com/hybrid-parameters-or-h-parameters/
https://www.electrical4u.com/abcd-parameters-of-transmission-line/
https://www.electrical4u.com/abcd-parameters-of-transmission-line/
https://www.electrical4u.com/abcd-parameters-of-transmission-line/

< |2(S) .

V()

Vi=z11l1+z1212

Vao=z21l1+72212

*  Once we know what the impedance parameters are, we can model
the behavior of the two-port with an equivalent circuit.
* Notice the similarity to Th’evenin and Norton equivalents

Admittance Parameters

* > <
+ +
Two-Port
Vi V2
Network
< I - i'z_)

l1=y11Vi+y12V2

l2=y21V1+y22V2

Y11 = input admittance = I—ll\/z go
Vi
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Y., = forward transfer admittance = I—Zl\/z ao
Vi

Y2, = output admittance = I—ll\/l oo
V2

Y1, = reverse transfer admittance = I—ll\/l ao

Vs
Hybrid Parameters
Vi=hili+hi2V2
l2=h21l1+h22V>2
1= input impedance = | Viv,00

h

h,, = forward current ratio = I—2|V2 ao
I,

hi, = reverse voltage ratio = \Ahl go
V2

hz; = output admittance = |J| kOO0
Vs
Example:

Given the following circuit. Determine the Z parameters.
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The Z parameter equations can be expressed in matrix form as follows.

Example:

I

— 30 100 —
M M
+ +
Vi 2 200t o0 Ve
Z11=8+20||30 =20 OO0
Z»=20||30 =12 00
| v
Z1 oonLoo
|
2
via 20x12.x20 O 8xI Therefore z .0 78)('2 08Q=z

12 2220030 I,

YA
ov. 000 1z, 00100
avaoozz O01ao
O0:002,00-200

advi: 00 0 0020 800 OO LOooo
gvoo 8 12 10

0200 0 00o0-200

Given the following circuit. Determine the Y parameters.

78




| AN
10 2
‘_
AN
2
100
[=y V+y V
1 11 1 12 2
[=y V+y V
2 21 1 22 2
I1 100 12
_’ 1—
AN
+ X +
-~
V1 —1 ES Ve |—
S 2 shaird
= A =
1 00
To find y11
.0 2 00 %
ViO 1, (201s)01,002s / 01000

I I
soyl10V1 y11 O V1 iv2ooOsDO0.5
1 1

Tofindy andy wereverse thingsand shortV
12 21 1

I2
yar \FHJ 0
V1

vooz1
2
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I2

y21|:||:| —=05S

Vi
I 10 L
AN
stioit |t ) +
—_ — S
— M —
I, 1Q
Y.a , [%o°
2
It
voaoazl y O 00.5s
2 1 2V,
1
y0050
2 N
S 2s 1y O1,vO0
_‘ ydo50
2 Vo 1 2 2(s02) 22

Problem 1

v Ol
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Find the Z and Y parameter for the networks shown in figure.

a.
b.
1'e o2
[ : ]
g.1(6)
[ 2 2 ]
1
d.
1'e
Solution

a. BYKVL, (Z,+ Z )+ Z ., =V]
Thus, the Z-parameters are:

m=(Z,+2Z.),z3=251=£,, zp=(Zy+Z,)

1 P
Za Zb
SHE
L l @
1 2'
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Problem 2

By KCL,
=k - b Lg
f =.l__‘._—_._.'__. for
Z Z" Z"
V,—V | I
andf - .2 |=____ b —1
, Fh+ ¥

Since, Ay = ¥, Vaz = M2y = 0. the z-paiameters da not exist
for this netviark

to—1 Z |—2

e .

‘ B'f KVL,

V;=

,l+’:_; ,’_l l '-—l -'—
by, or.i,-(r]l,+(‘,](: and ':‘(r]"*(rJ’3
Thus, the r-palameteis arg,

M mEyEam=a

Since, Az = ;.5 =~ 5333 = U, the y-palameteis ¢o not exist
for this netvoik

By KCL,

L=Y, i+ (==Y, +Y) - 1Y
=Y+ (=) ==Y, + V(Y + 1)

Thus, the y-parameters are:

M=+ a= ===+,
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a. The following equations give the voltages V; and V> at the two
ports of a two port network, Vy = 5114215, Vo = 2l1+7;

A load resistance of 3 Q Is connected across port-2. Calculate the
Input impedance.

b. The z-parameters of a two port networkare z;1=5Q, 250, =2Q, 2;-
=751 =3 Q. Load resistance of 4 Q is connected across the output
port. Calculate the input impedance.

Solution

a. From the given equations,

Vy = 51 + 21, (i)

Vo =21 + 17 (ii)

At the output, Vo = — bR = — 3/
Putting this value in (ii),

—3lp =211 +Igfily = —1/2

mmmgmnym=5h+(%?}=4h

—_

. Input impedance, Zj, = — = 4Q

I

b. [Same as Prob. (a)] Zj, = ? =3.5Q
1

Problem 3
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Determine the h-parameter with the following data:

i. with the output terminals short circuited, V1 =25V, =1 A, =2
Py

ii. with the input terminals open circuited, V; =10V, Vo=50V, [, =2
Py

Solution

The fh-parameter equations are,
Vi =hiih +Bi2Ve
Iz = hig1lh + hazVa

a. With output short-circuited, V2 = 0, given: V7 =25V, [; =1 A and
I =2 AL

25=1h,; x1
and 2=h,, =1

b. With input open-circuited, /4 = 0, given: V7 = 10V, Vs = 50V and
Iz =2 A,

- 10 = Ay, % 50

£ 1 -
il 2=h-_,3><50} = hy=—-=02and fi,;=—--7T=0.0475

25

| =

Thus, the A-parameters are:

[h] = [25 Q2 0.2 ]

2 0.04 !
Problem 4
a. Find the equivalent r-network for the T-network shown in the Fig.
(@).
b. Find the equivalent T -network for the snetwork shown in the Fig.
(b).
Z,=20 Zp=250 Y3 =027
1 2
Ze=50
1! 2!
(@)
Solution

a. Let the equivalent rrnetwork have Y- as the series admittance
and Y, and ¥g as the shunt admittances at port-1 and port-2,
respectively.

- [2
e M e [ Vo |4t
+

L]
*r—
[
L]
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Now, the z-parameters are given as:
Z11 = (ZA'FZ(“):?Q, Z|2=221=Z('=SQ, 222=(ZB+ .Z(ﬁ)= 7.5

a4

wBAZ= (Tx TS —8x%5)y=2750"

. 2322_.7.5
S e

14 550 I
® > AVAVAVA & —<—8
+ “+
V5 110 13.75 Q2 é Vo
. . = -
Equivalent mr-network
1 1
Z=—=11%,
A Y4
o R
Y
1
Zr=—=55Q
Ye ]
Za= Zg=
Ya=10T 0.625 Q2 0252
1 2
b.
Y1=020 Yo=050 Ze=125Q
1 2 y 32 2
m-network Equivalent T-network

85




The y-patameteis,

Yn=120 ya=1==10amxl 3, =150
By (1.2x15-1)=0.8

Z91 = %,—2= (']’; Q, :,3=:3|=—’2:‘:'—.-(—)|‘—'Q :22.__.%317__:%0
Z,= (x5, 2) = g2 = 06250
- z,,:un—:,zp:%‘é:().zsu >

Zr:z'?=ﬁ%="259 ,
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CHAPTER 9

LOW PASS FILTER INTRODUCTION

Basically, an electrical filter is a circuit that can be designed to modify,
reshape or reject all unwanted frequencies of an electrical signal and accept or pass only
those signals wanted by the circuit’s designer. In other words they “filter-out” unwanted
signals and an ideal filter will separate and pass sinusoidal input signals based upon their
frequency.

In low frequency applications (up to 100kHz), passive filters are generally
constructed using simple RC(Resistor-Capacitor) networks, while higher frequency
filters (above 100kHz) are usually made from RLC (Resistor-Inductor-Capacitor)
components.

Passive Filters are made up of passive components such as resistors,
capacitors and inductors and have no amplifying elements (transistors, op-amps, etc) so
have no signal gain, therefore their output level is always less than the input.

Filters are so named according to the frequency range of signals that they
allow to pass through them, while blocking or “attenuating” the rest. The most commonly
used filter designs are the:

1. The Low Pass Filter - the low pass filter only allows low frequency signals from

OHz to its cut-off frequency, fc point to pass while blocking those any higher.

2. The High Pass Filter - the high pass filter only allows high frequency signals from
its cut-off frequency, fc point and higher to infinity to pass through while blocking

those any lower.

3. The Band Pass Filter - the band pass filter allows signals falling within a certain
frequency band setup between two points to pass through while blocking both the

lower and higher frequencies either side of this frequency band.

4 Band Stop Filter - It is so called band-elimination, band-reject, or notch filters; this
kind of filter passes all frequencies above and below a particular range set by the
component values.

Simple First-order passive filters (1st order) can be made by connecting
together a single resistor and a single capacitor in series across an input signal, (Vin) with
the output of the filter, (Vout ) taken from the junction of these two components.
Depending on which way around we connect the resistor and the capacitor with regards
to the output signal determines the type of filter construction resulting in either a Low
Pass Filter or a High Pass Filter.

As the function of any filter is to allow signals of a given band of
frequencies to pass unaltered while attenuating or weakening all others those are not
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wanted, we can define the amplitude response characteristics of an ideal filter by using
an ideal frequency response curve of the four basic filter types as shown.

IDEAL FILTER RESPONSE CURVES

Ap Ap Ar AF
t Low Pass Filter } High Pass Filter } BandPass Filter 1 Band Stap Filter
Pass| Stop Stop | Pass Stop | Pass | Stop  |Pass | Stop | Pass
> - > 7
A A A 3

A Low Pass Filter can be a combination of capacitance, inductance or
resistance intended to produce high attenuation above a specified frequency and little or
no attenuation below that frequency. The frequency at which the transition occurs is called
the “cutoff” frequency. The simplest low pass filters consist of a resistor and capacitor but
more sophisticated low pass filters have a combination of series inductors and parallel
capacitors. In this tutorial we will look at the simplest type, a passive two component RC
low pass filter.

THE LOW PASS FILTER

A simple passive RC Low Pass Filter or LPF, can be easily made by
connecting together in series a single Resistor with a single Capacitor as shown below. In
this type of filter arrangement the input signal (Vin) is applied to the series combination
(both the Resistor and Capacitor together) but the output signal (Vout ) is taken across
the capacitor only. This type of filter is known generally as a “first-order filter” or “one-
pole filter”, why first-order or single-pole?, because it has only “one” reactive component,
the capacitor, in the circuit.

RC LOW PASS FILTER CIRCUIT

As mentioned Resistor, R I

previously in the Capacitive M o
Reactance tutorial, the reactance of a ¥
capacitor varies inversely with .
frequency, while the value of the Vi Capacitor, C —x Ve
resistor remains constant as the
frequency changes. At low frequencies
the capacitive reactance, (Xc) of the A

capacitor will be very large compared -
to the resistive value of the resistor, R and as a result the voltage across the capacitor, Vc
will also be large while the voltage drop across the resistor, Vr will be much lower. At high

frequencies the reverse is true with Vc being small and Vr being large.

While the circuit above is that of an RC Low Pass Filter circuit, it can also
be classed as a frequency variable potential divider circuit similar to the one we looked
atin the Resistors tutorial. In that tutorial we used the following equation to calculate the
output voltage for two single resistors connected in series.
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- T I~ ~
Voo =
iz’\."g BE 1%~
1 A
R .1 R — Tr -t : FE W e CiC1l
where: In1 7 N9 = o7, the total resistance of the crowt

We also know that the capacitive reactance of a capacitor in an AC circuit

is given as:

Opposition to current flow in an AC circuit is called impedance,
symbol Z and for a series circuit consisting of a single resistor in series with a single
capacitor, the circuit impedance is calculated as:

!
7 = 1R L xR
Y|

L |

Then by substituting our equation for impedance above into the resistive

potential divider equation gives us:

RC POTENTIAL DIVIDER EQUATION

So, by using the potential divider equation of two resistors in series and
substituting for impedance we can calculate the output voltage of an RC Filter for any

given frequency.

LOW PASS FILTER EXAMPLE
A Low Pass Filter circuit consisting of a resistor of 4k7(Q in series with a

capacitor of 47nF is connected across a 10v sinusoidal supply. Calculate the output
voltage (Vout ) at a frequency of 100Hz and again at frequency of 10,000Hz or 10kHz.
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Voltage Output at a Frequency of 100Hz.

1 L]
. i —
P3N Sy - -
ardlbl
=
Tr =17 FaN v — 1N
kY STTT ¥ TR < —_— i R W = =
L L4 | ~rd | P iy
| L f ot F T 1 L) o
o BT AL Af 4/ T 353605

¥

- L — + — I My
P — T = — ——— — J330.Uaq
- el LD ; POy O AT 2 10
R M F_ra = W B W W W | B =
~ TIIL &~
S ot £ 1. S0, U N 1Ol
Vomorr — Voo ™ — iy — WL 1O
0 - 2 | =2 fa=rn? | ano 2
W BT AL Af F Y TH50.0
\ Y

FREQUENCY RESPONSE

We can see from the results above that as the frequency applied to the RC network
increases from 100Hz to 10 kHz, the voltage dropped across the capacitor and therefore
the output voltage (Vout) from the circuit decreases from 9.9v to 0.718v.

By plotting the networks output voltage against different values of input frequency, the
Frequency Response Curve or Bode Plot function of the low pass filter circuit can be
found, as shown below.

Frequency Response of a 1st-order Low Pass Filter
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Coner

- Vout Freqguiency
Gain — 20 log Vin Jﬂc
. “assBanc ) | . StopBand
0dB (
-3d3 +—-3d3 (457
Frequenc
R i d Slope =
= esponse _20cB/Decade
= A
S I
Bandwidth
- -
Plase fl; L=) Frequency iHz)
0 (Logarith nic Scale]
445*
Phass
Shift
-a0°

Frequency (Hz)

The Bode Plot shows the Frequency Response of the filter to be nearly flat
for low frequencies and the entire input signal is passed directly to the output, resulting
in a gain of nearly 1, called unity, until it reaches its Cut-off Frequency point (fc). This is
because the reactance of the capacitor is high at low frequencies and blocks any current
flow through the capacitor.

After this cut-off frequency point the response of the circuit decreases to
zero at a slope of -20dB/ Decade or (-6dB/Octave) “roll-off”. Note that the angle of the
slope, this -20dB/ Decade roll-off will always be the same for any RC combination.

Any high frequency signals applied to the low pass filter circuit above this
cut-off frequency point will become greatly attenuated, that is they rapidly decrease. This
happens because at very high frequencies the reactance of the capacitor becomes so low
that it gives the effect of a short circuit condition on the output terminals resulting in zero
output.

Then by carefully selecting the correct resistor-capacitor combination, we
can create a RC circuit that allows a range of frequencies below a certain value to pass
through the circuit unaffected while any frequencies applied to the circuit above this cut-
off point to be attenuated, creating what is commonly called a Low Pass Filter.

For this type of “Low Pass Filter” circuit, all the frequencies below this
cut-off, fc point that are unaltered with little or no attenuation and are said to be in the
filters Pass band zone. This pass band zone also represents the Bandwidth of the filter.

93




Any signal frequencies above this point cut-off point are generally said to be in the filters
Stop band zone and they will be greatly attenuated.

This “Cut-off”, “Corner” or “Breakpoint” frequency is defined as being the
frequency point where the capacitive reactance and resistance are equal, R = Xc = 4k7(.
When this occurs the output signal is attenuated to 70.7% of the input signal value or -
3dB (20 log (Vout/Vin)) of the input. Although R = Xc, the output is not half of the input
signal. This is because it is equal to the vector sum of the two and is therefore 0.707 of the
input.

As the filter contains a capacitor, the Phase Angle (@) of the output
signal LAGS behind that of the input and at the -3dB cut-off frequency (fc) and is - 45° out
of phase. This is due to the time taken to charge the plates of the capacitor as the input
voltage changes, resulting in the output voltage (the voltage across the capacitor)
“lagging” behind that of the input signal. The higher the input frequency applied to the
filter the more the capacitor lags and the circuit becomes more and more “out of phase”.

The cut-off frequency point and phase shift angle can be found by using
the following equation:

CUT-OFF FREQUENCY AND PHASE SHIFT

o,
“v'-».

L N

.
YR Ve ATOO AT <107
N NN d o ARV BV A i

v d b

Then for our simple example of a “Low Pass Filter” circuit above, the cut-
off frequency (fc) is given as720Hz with an output voltage of 70.7% of the input voltage
value and a phase shift angle of -45°.

HIGH PASS FILTERS

A High Pass Filter or HPF, is the exact opposite to that of the previously
seen Low Pass filter circuit, as now the two components have been interchanged with the
output signal ( Vout ) being taken from across the resistor as shown.

Where as the low pass filter only allowed signals to pass below its cut-off
frequency point, fc, the passive high pass filter circuit as its name implies, only passes
signals above the selected cut-off point, fc eliminating any low frequency signals from the
waveform. Consider the circuit below.

THE HIGH PASS FILTER CIRCUIT
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/\ Capammr C

—l-
r\ |

W

| Resistor, R $ Wom
° -~

o

In this circuit arrangement, the reactance of the capacitor is very high at low frequencies
so the capacitor acts like an open circuit and blocks any input signals at Vin until the cut-
off frequency point (fc) is reached. Above this cut-off frequency point the reactance of the
capacitor has reduced sufficiently as to now act more like a short circuit allowing the

entire input signal to pass directly to the output as shown below in the High Pass
Frequency Response Curve.

FREQUENCY RESPONSE OF A 1ST ORDER HIGH PASS FILTER.

Gain (dB) = 20 log /0ut

Vin
A A
StopBand { Pass Band
e y l‘
0dB
- —— == Frequency
Response
; Slope =
5] | +20dBDecade
| Bandwidth
| - >
-dB
Phase fe(HP) Frequency (Hz)
+90° [Logarithmic Scale]
+45°
U{I

Frequency (Hz)

The Bode Plot or Frequency Response Curve above for a High Pass filter is
the exact opposite to that of a low pass filter. Here the signal is attenuated or damped at
low frequencies with the output increasing at +20dB/Decade (6dB/Octave) until the
frequency reaches the cut-off point ( fc ) where again R = Xc. It has a response curve that
extends down from infinity to the cut-off frequency, where the output voltage amplitude
is 1/V2 = 70.7% of the input signal value or -3dB (20 log (Vout/Vin)) of the input value.
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Also we can see that the phase angle (@) of the output signal LEADS that
of the input and is equal to+45° at frequency fc. The frequency response curve for a high
pass filter implies that the filter can pass all signals out to infinity. However in practice,
the high pass filter response does not extend to infinity but is limited by the electrical
characteristics of the components used.

The cut-off frequency point for a first order high pass filter can be found
using the same equation as that of the low pass filter, but the equation for the phase shift
is modified slightly to account for the positive phase angle as shown below.

CUT-OFF FREQUENCY AND PHASE SHIFT

<

fc

[l

nr o) M+

The circuit gain, Av which is given as Vout/Vin (magnitude) and is calculated as:

f — “I;;! - f— — — = —
atlow f: Xc —«, Vout=0

HIGH PASS FILTER EXAMPLE.

Calculate the cut-off or “breakpoint” frequency ( fc ) for a simple high
pass filter consisting of an82pF capacitor connected in series with a 240kQ resistor.

4 A

J]

! -
- Pproyera i

LA | Py in

BAND PASS FILTERS

1
!

o
1
4

\'.""-_‘
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-
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= |
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i
-
(-
£
o8]
[
o+
-

The cut-off frequency or fc point in a simple RC passive filter can be
accurately controlled using just a single resistor in series with a non-polarized capacitor,
and depending upon which way around they are connected either a low pass or a high
pass filter is obtained.
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One simple use for these types of Passive Filters is in audio amplifier
applications or circuits such as in loudspeaker crossover filters or pre-amplifier tone
controls. Sometimes it is necessary to only pass a certain range of frequencies that do not
begin at 0Hz, (DC) or end at some high frequency point but are within a certain frequency
band, either narrow or wide.

By connecting or “cascading” together a single Low Pass Filter circuit with
a High Pass Filter circuit, we can produce another type of passive RC filter that passes a
selected range or “band” of frequencies that can be either narrow or wide while
attenuating all those outside of this range. This new type of passive filter arrangement

produces a frequency selective filter known commonly as a Band Pass Filter or BPF for
short.

BAND PASS FILTER CIRCUIT
R C, I

:
|

Unlike a low pass filter that only pass signals of a low frequency range or
a high pass filter which pass signals of a higher frequency range, a Band Pass Filters passes
signals within a certain “band” or “spread” of frequencies without distorting the input
signal or introducing extra noise. This band of frequencies can be any width and is
commonly known as the filters Bandwidth.

Bandwidth is commonly defined as the frequency range that exists
between two specified frequency cut-off points ( fc ), that are 3dB below the maximum
centre or resonant peak while attenuating or weakening the others outside of these two
points.

Then for widely spread frequencies, we can simply define the term
“bandwidth”, BW as being the difference between the lower cut-off frequency (fcLower )
and the higher cut-off frequency ( fcuicrer ) points. In other words, BW = fu - fi. Clearly for
a pass band filter to function correctly, the cut-off frequency of the low pass filter must be
higher than the cut-off frequency for the high pass filter.

The “ideal” Band Pass Filter can also be used to isolate or filter out certain
frequencies that lie within a particular band of frequencies, for example, noise
cancellation. Band pass filters are known generally as second-order filters, (two-pole)
because they have “two” reactive component, the capacitors, within their circuit design.
One capacitor in the low pass circuit and another capacitor in the high pass circuit.

Frequency Response of a 2nd Order Band Pass Filter.
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The Bode Plotor frequency response curve above shows the

characteristics of the band pass filter. Here the signal is attenuated at low frequencies
with the output increasing at a slope of +20dB/Decade (6dB/Octave) until the frequency
reaches the “lower cut-off” point fi. At this frequency the output voltage is again 1/V2 =
70.7% of the input signal value or -3dB (20 log (Vout/Vin)) of the input.

The output continues at maximum gain until it reaches the “upper cut-off”
point fu where the output decreases at a rate of -20dB/Decade (6dB/Octave) attenuating
any high frequency signals. The point of maximum output gain is generally the geometric
mean of the two -3dB value between the lower and upper cut-off points and is called the
“Centre Frequency” or “Resonant Peak” value fr. This geometric mean value is calculated
as being fr 2 = fuppEr) X f(LOWER).

A band pass filter is regarded as a second-order (two-pole) type filter
because it has “two” reactive components within its circuit structure, then the phase
angle will be twice that of the previously seen first-order filters, i.e., 180°. The phase
angle of the output signal LEADS that of the input by +90° up to the centre or resonant
frequency, fr point were it becomes “zero” degrees (0°) or “in-phase” and then changes
to LAG the input by -90° as the output frequency increases.

The upper an d lower cut-off frequency points for a bandpass filter can be
found using the same formula as that for both the low and high pass filters, For example.
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Then clearly, the width of the pass band of the filter can be controlled by the
positioning of the two cut-off frequency points of the two filters.

Band Pass Filter Example

A second-order band pass filteris to be constructed using RC

components that will only allow arange of frequencies to pass above 1kHz (1,000Hz)
and below

30kHz

— _ o Si %n al
ou

High-pass filter out

Signal __,
Input

Low-pass filter

blocks frequencies
that are too high

blocks frequencies
that are too low

(30,000Hz). Assuming that both the resistors have values of 10k(1’s, calculate the values
of the t wo capacitors required.

The High Pass Filter Stage
The value of the capacitor C1 required to give a cut-off frequency fi.of 1kHz

with a resistor value of10k() is calculated as:

Then, the values of R1 and C1 required for the high pass stage to give a

cut-off frequency of 1.0kHz are: R1 =10kQ’s and C1 = 15nF.

The Low Pass Filter Stage

The value of the capacitor C2 required to give a cut-off frequency fu of 30kHz with a
resistor value of10k(} is calculated as:

A
|

;Y — —

Then, the values of R2 and C2 required for the low pass stage to give a cut-
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off frequency of 30kHz are, R = 10kQ’s and C = 510pF. However, the nearest preferred
value of the calculated capacitor value of 510pF is 560pF so this is used instead.

With the values of both the resistances R1 and R2 given as 10k(}, and the
two values of the capacitors C1 and C2 found for the high pass and low pass filters as 15nF
and 560pF respectively, then the circuit for our simple passive Band Pass
Filter is given as.

Completed Band Pass Filter Circuit

High P ass Filter Stage Low Pass Filter Stage

il Fi=10K0O

i
F——"W\ 3
R1=10KO $ C2=560pF ___ Vaow
+ O

Band Pass Filter Resonant Frequency

Win

(0 e
——t— | |

We can also calculate the “Resonant” or “Centre Frequency” (fr) point of the band pass
filter were the output gain is at its maximum or peak value. This peak value is not the
arithmetic average of the upper and lower -3dB cut-off points as you might expect but is
in fact the “geometric” or mean value. This geometric mean value is calculated as

being fr 2 = fcuppPer) X fcLower) for example:

Centre Frequency Equation

«  Where, fris the resonant or centre frequency
«  fris the lower -3dB cut-off frequency point

«  fuis the upper -3db cut-off frequency point
And in our simple example above, the calculated cut-off frequencies were
found to be f.= 1,060 Hz and fu = 28,420 Hz using the filter values.

Then by substituting these values into the above equation gives a central
resonant frequency of:

b
b

p—"
‘I§ I
I
(]
‘..l‘.j...
N

Il
L

i
-
£
[

i

¥ N
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Band-stop filters

Itis so called band-elimination, band-reject, or notch filters; this kind of
filter passes all frequencies above and below a particular range set b y the component
values. Not surprisingly, it can be made out of a low-pass and a high-pass filter, just like
the band-pass design, except that this time we connect the two filter sections in parallel
with each other instead of in series. (Figure below)

passes low frequencies

—| Low-pass filter | —

S,ignatl _,T

> Signal
T OU%pU'[

inpu l
__, | High-passfilter |_,

passes high frequencies

System level block diagram of a band-stop filter.

Constructed using two capacitive filter sections, it looks something like

(Figure below).
R, R,
A% VWA
c, ST g
,_| I SR I I
I [ I
source R; % Rioad
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Butterworth Filter

A Butterworth filter is a type of signal processing filter designed to have a frequency
response as flat as possible in the passband. Hence the Butterworth filter is also known as
“maximally flat magnitude filter”. It was invented in 1930 by the British engineer and
physicist Stephen Butterworth in his paper titled “On the Theory of Filter Amplifiers”.
The frequency response of the Butterworth filter is flat in the passband (i.e. a bandpass
filter) and roll-offs towards zero in the stopband. The rate of roll-off response depends on
the order of the filter. The number of reactive elements used in the filter circuit will
decide the order of the filter.

The inductor and capacitor are reactive elements used in filters. But in the case of
Butterworth filter only capacitors are used. So, the number of capacitors will decide the
order of the filter.

Here, we will discuss the Butterworth filter with a low pass filter. Similarly, the high pass
filter can be designed by just changing the position of resistance and capacitance.
Butterworth Low Pass Filter Design

While designing the filter, the designer tries to achieve a response near to the ideal filter.
It is very difficult to match results with the exact ideal characteristic. We need to use
complex higher-order If you increase the order of the filter, the number of cascade stages
with the filter is also increased. But in practice, we cannot achieve Butterworth’s ideal
frequency response. Because it produces excessive ripple in the passband.In Butterworth
filter, mathematically it is possible to get flat frequency response from 0 Hz to the cut-off
frequency at -3dB with no ripple. If the frequency is more than the cut-off frequency, it
will roll-off towards zero with the rate of -20 dB/decade for the first-order filter.If you
increase the order of the filter, the rate of a roll-off period is also increased. And for
second-order, it is -40 dB/decade. The quality factor for the Butterworth filter is 0.707.
The below figure shows the frequency response of the Butterworth filter for various
orders of the filter
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Frequency Response of Butterworth FilterThe generalized form of frequency response for
nth-order Butterworth low-pass filter is;

. |
H(jw) =

2( ¥ 2n

\.;'"'1 8 2

Where,

n = order of the filter,

o = operating frequency (passband frequency) of circuit
oc = Cut-off frequency

€ = maximum passband gain = Amax

The below equation is used to find the value of ¢.

Hy=

Hg
vV1+ 2

Where,

H1 = minimum passband gain

Ho = maximum passband gain

First-order Lowpass Butterworth Filter

The lowpass filter is a filter that allows the signal with the frequency is lower than the
cutoff frequency and attenuates the signals with the frequency is more than cutoff
frequency. In the first-order filter, the number of reactive components is only one. The
below figure shows the circuit diagram of the first-order lowpass Butterworth filter.
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Fig. 2.79 First order high pass Buttorworth filter

The low pass Butterworth filter is an active Low pass filter as it consists of the op-amp.
This op-amp operates on non-inverting mode. Hence, the gain of the filter will decide by
the resistor Ri and Rr. And the cutoff frequency decides by R and C.

Now, if you apply the voltage divider rule at point Va and find the voltage across a
capacitor. It is given as;

o _—iXe .,
@ T j-XL' i
. l—' \
‘;; — J(.Z?j(l ' I-";n
R—j( Zafc )
v
M= S
2 ] .'..f.t'?l'
J
v ."n
V, =

1+ j2x fRC

Because of the non-inverting configuration of an op-amp,
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WHERE

Rp
v, I O i
! 3

Ags = Gain of filter in Passband

1 f. = Cutoff Frequency
fe

= 3xRC f = Operating Frequency




1. At very low frequency, f<<f.

—| =~ Ag(Constant)

2. At cutoff frequency, f=f,

|Vo| _ 4
IVal V2
3. At high frequency, f> f.
Vo
| ‘u |
The below figure shows the frequency response of first-order lowpass Butterworth
filter.
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Fig. 2.75 Frequency response

Second-order Butterworth Filter

The second-order Butterworth filter consists of two reactive components. The
circuit diagram of a second-order low pass Butterworth filter is as shown in the
below figure.
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Fig. 2.76 Second order low pass butterworth fliter
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In this type of filter, resistor R and Rr are the negative feedback of op-amp. And
the cutoff frequency of the filter decides by Ry, Rs, C», and Cs.The second-order
lowpass Butterworth filter consists of two back-to-back connected RC networks.
And R is the load resistance. First-order and second-order Butterworth filters are
very important. Because we can get higher-order Butterworth filter by just
cascading of the first-order and second-order Butterworth filters.

Let’s analyse the circuit of second-order Butterworth filter,

Apply Kirchhoff’s Current Law at point V1.

! :‘n = ‘fl

Using potential divider rule at point V,
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Because of the non-inverting configuration of an op-amp,
Vo= :‘; |

Where,

Ar=1+ Fr- = Gamof [ilter in possband
1

Vi = \ 1\'_‘\'.": 1 ‘u‘(_ﬁlf_)lfj
P 4 s Cy) (R3RasCh + Ry + Ra) = Ry

ANV s R Ry AV,
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Vi
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Rearrange this equation,
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Compare this equation with the standard form transfer function for second-order
Butterworth filter. And that is,

Vo A
=g

‘-m S

N 9
L VT /1o
A WesS T Wi

By comparing above equations, we can find the equation of cutoff frequency and
overall gain for the second-order lowpass Butterworth filter.

The gain of filter is,




Amer = 57
' Ry Ry C5C
And the Cutoff frequency of filter is,
o1
7T RyRyCaCy

l
27?\,'1[(_5[(_;(.'_-("‘

fe=

Now, if we consider the value of Rj 1s same as Rj and the value of C 1ssame as C3.

Ri=Ri=R and Co=0=0C

Now if we put above values in transfer function,

P ‘/
Vo e
Vv 2 RC+RC+RC—-A, RC 1
in 5 4 5 BT + yreras

e A
"~ RC

we

Vo A
Vin 2+ s(8— Af ) + w?

From above equation, the quality factor Q is equal to,

B 1
—:j—-A!
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We can say that, the quality factor is only depends on the gain of filter. And the
value of gain should not more than 3. If the value of gain is more than 3, the
system will be unstable.

The value of quality factor is 0.707 for the Butterworth filter. And if we put this
value in equation of quality factor, we can find the value of gain.

0.707 = -
3

A =1.586
1 + R; Ry = 1.586
R;Ri = 0.586

While designing the second-order Butterworth filter above relation must be satisfy.
The frequency response of this filter is as shown in below figure.
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Third-order Lowpass Butterworth Filter

Third-order lowpass Butterworth filter can design by cascading the first-order and
second-order Butterworth filter.




The below figure shows the circuit diagram of the third-order lowpass Butterworth filter.

Third- Order Low pass Butterworth Filter Circunt
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Third-order Low Pass Butterworth Filter

In this figure, the first part shows the first-order lowpass Butterworth filter, and the
second part shows the second-order lowpass Butterworth filter.

But in this condition, the voltage gain of the first part is optional and it can be set at any
value. Therefore, the first op-amp is not taking part in voltage gain. Hence, the figure for
the third-order low pass filter can be expressed as below figure also;

First-order

Second-order Low pass Filter
Low pass Filter

re— 1
2\ A
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The voltage gain of a second-order filter affects the flatness of frequency response.
If the gain of the second-order filter is kept at 1.586, the gain will down 3db for
each part. So, the overall gain will down 6dB at the cutoff frequency.

By increasing the voltage gain of the second-order filter, we can offset the
cumulative loss of voltage gain.

In the third-order Butterworth filter, the rate of a roll-off period is -60dB/decade.
And the frequency response of this filter is nearer to the ideal Butterworth filter
compared to the first and second-order filters. The frequ

Gain (dB)

Ideal Response

..................... 3 Rate of roll-off
i = -60dB/decade

6}"a\sband—}:§ = EA4Q4U :

-~

1 (Hz2)

(frequency response of this filter is as shown in the below figure.)

Fourth-order Lowpass Butterworth Filter

Fourth-order Butterworth filter is established by the cascade connection of two
second-order low pass Butterworth filters. The circuit diagram of the fourth-order
lowpass Butterworth filter is as shown in the below figure.
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