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CHAPTER#1     

SIGNAL FLOW GRAPH     

    

BASIC DEFINITION IN BLOCK DIAGRAM MODEL:     

Block diagram:  It is the pictorial representation of the cause - and - response relationship between input and  

output of a physical system.    

    

    

( a )   ( b)    

Fig. (a) A block diagram representation of a system and    

( b )   A block diagram representation with  

gain of a system    

    

Output:  The value of input multiplied by the gain of the system.    

    

Summing point:  It is the component of a block diagram model at which two or more signals can be added or  

subtracted. In Fig,  inputs R(s) and  

B(s)  have  been  given  to  a  

summing point and  output  its  

signal  is  E(s).  

    

    

    

    

Fig. A block diagram representation of a sy stem showing its different components    



  

  

off point: It is 

the 

component of 

a block 

diagram 

model at 

which a signal 

can be taken 

directly and 

supplied to 

one or more 

points as 

shown in Fig.   

Forward path: It is the direction of signal flow from input towards output.   

Feedback path: It is the direction of signal flow from output towards input.   



 

  

  

  

RULES       FOR       N REDUCTIO       OF       K BLOC       DIAGRA M       MODEL :       

    

    

    

.       



  

  

PROCEDURE FOR REDUCTION OF BLOCK DIAGRAM MODEL:   

Step 1: Reduce the cascade blocks.   

Step 2: Reduce the parallel blocks.   

Step 3: Reduce the internal feedback loops.   

Step 4: Shift take-off points towards right and summing points towards left.   

Step 5: Repeat step 1 to step 4 until the simple form is obtained.   

Step 6: Find transfer function of whole system as   

   

   
PROCEDURE FOR FINDING OUTPUT OF BLOCK DIAGRAM MODEL WITH MULTIPLE  

INPUTS:   

Step 1: Consider one input taking rest of the inputs zero, find output.   

Step 2: Follow step 1 for each inputs of the given Block Diagram model and find their corresponding outputs.   

Step 3: Find the resultant output by adding all individual outputs.   

   

Example 1:- Find C(s)/R(s) using block diagram reduction rules   



  

  

      



  

  

Example-2:- Determine output C due to inputs R & U using the superposition method.   

   

   

    

  



  

  

SIGNAL FLOW GRAPHS (SFGS)   



  

  

It is a pictorial representation of a system that graphically displays the signal transmission in it.   

   

 Basic Definitions in  SFGs:   

Input or source node: It is a node that has only outgoing branches i.e. node ‘r’.   

Output or sink node: It is a node that has only incoming branches i.e. node ‘c’.   

Chain node: It is a node that has both incoming and outgoing branches i.e. nodes ‘x1’,  ‘x2’,‘x3’,‘x4’,‘x5’and 

‘x6’.   

Gain or transmittance: It is the relationship between variables denoted by two nodes or value of a branch., 

Transmittances are ‘t1’, ‘t2’,‘t3’,‘t4’,‘t5’and ‘t6’.   

Forward path: It is a path from input node to output node without repeating any of the nodes in between them. 

There are two forward paths, i.e. path-1:‘r-x1-x2-x3-x4-x5-x6-c’ and path-2:‘r-x1-x3-x4-x5-x6-c’.   

Feedback path: It is a path from output node or a node near output node to a node near input node without repeating 

any of the nodes in between them.   

Loop: It is a closed path that starts from one node and reaches the same node after trading through other nodes. 

There are four loops, i.e. loop-1:‘x2-x3-x4-x1’, loop-2:‘x5-x6- x5’, loop-3:‘x1-x2-x3-x4-x5-x6-x1’ and loop-4:‘x1-x3x4-

x5-x6-x1’.   

Self Loop: It is a loop that starts from one node and reaches the same node without trading through other nodes i.e. 

loop in node ‘x4’ with transmittance ‘t55’.   

Path gain: It is the product of gains or transmittances of all branches of a forward path. The path gains are P1 = 

t1t2t3t4t5 (for path-1) and P2 = t9t3t4t5 (for path-2).   

Loop gain: It is the product of gains or transmittances of all branches of a loop. There are four loops, i.e. L1 = t2t3t6, 

L2 = -t5t7, L3 = -t1t2t3t4t5t8, and L4 = -t9t3t4t5t8.   

Dummy node: If the first node is not an input node and/or the last node is not an output node than a node is 

connected before the existing first node and a node is connected after the existing last node with unity 

transmittances. These nodes are called dummy nodes. ‘r’ and ‘c’ are the dummy nodes.   

Non-touching Loops: Two or more loops are non-touching loops if they don’t have any common nodes between 

them. L1 and L2 are non-touching loops   

   

PROPERTIES OF SFGS:   

• Applied to linear system   

• Arrow indicates signal flow   

• Nodes represent variables, summing points and take-off points   



  

  

• Algebraic sum of all incoming signals and outgoing nodes is zero   

• SFG of a system is not unique   

• Overall gain of an SFG can be determined by using Mason’s gain formula   



  

  

SFG FROM BLOCK DIAGRAM MODEL:   



  

  

   

   

     

   

Step-1: All variables and signals are replaced by nodes.   

   

Step-2: Connect all nodes according to their signal flow.   

   

Step-3: Each of gains is replaced by transmittances of the branches connected between two nodes of the forward 

paths.   

Step-4: Each of gains is replaced by transmittances multiplied with (-1) of the branches connected between two 

nodes of the forward paths.   

     
   

     
   

   

   

MASON’S GAIN FORMULA:   

Transfer function of a system=   

   

   

Where,   



  

  

N= total number of forwardpaths   

Pk= path gain of kth forward path   

∆= 1 - (∑loop gains of all individual loops) + (∑gain product of loop gains of all possible two non- touching loops) 

- (∑gain product of loop gains of all possible three non-touching loops) + …   

∆k= value of ∆ after eliminating all loops that touches kth forward path   



 

  

    

Example:   -       Find       overall       transfer       function       of       system       using       Mason’s       gain       formula       

  

  
  



  

  

CONSTRUCTION OF SIGNAL FLOW GRAPH FROM ALGEBRAIC EQUATIONS:-   

Let us construct a signal flow graph by considering the following algebraic equations   

   

 

   

   

  

 

 



  

 

  



  

  

     



  

 

CHAPTER#2 TIME RESPONSE ANALYSIS   

  



  

  

   

TIME RESPONSE OF CONTROL SYSTEM:   

Time response c(t)is the variation of output with respect to time. The part of time response that goes to zero after 

large interval of time is called transient response ctr(t). The part of time response that remains after transient 

response is called steady-state response css(t).   

   

   

STANDARD TEST SIGNALS   

1. Impulse Signal: An impulse signal δ(t) is mathematically defined as follows.   

   

   
Laplace transform of impulse signal is   

   

   

   

2. Step Signal: A step signal u(t) is mathematically  defined as follows.   

   

   
Laplace transform of step signal is   

   

3. Ramp Signal: A step signal r(t) is mathematically defined as follows.   



  

 

 
 
   

   

   

   
(8.10)   

Laplace transform of ramp signal   

i 

 

s 

 

4. Parabolic Signal A step signal a(t) is  mathematically defined as follows.   

 
   
   

TIME RESPONSE OF 1ST ORDER SYSTEM:   

   

 

    

Laplace transform of parabolic  signal is    

    



  

  

      
   

 

   

 

   
   



  

 

(i) Unit Step Response:-  

Consider the unit step  

signal as an  

input to  

first  

order 

system.  

So, 

r(t)=u(t)   

  

   
On both the sides, the denominator term is the 

same. So, they will get cancelled by each other.  

Hence, equate the numerator terms.   

   

1=A(sT+1)+Bs   

By equating the constant terms on both the sides, you will get A = 1.   

Substitute, A = 1 and equate the coefficient of the s terms on both the sides.   

0=T+B   

 



  

  

B=−T  Substitute, A = 1 and B = −T in partial fraction expansion of C(s)   

Apply inverse Laplace transform on both the sides.   

    



 

 
  



 

  

 

  

    

    

    

    

    

  
  

    

    

  
  



 

 

 



  

  

       



  

  

The above expression of output c(t) can be rewritten as   

   

  
   

  
   

   

   

  



  

  

   



  

  

   

   

   

  
   

  
   

  
   

  



  

  

  



  

  

      

TIME RESPONSE SPECIFICATION   

  

Delay Time   

It is the time required for the response to reach half of its final value from the zero instant. It is denoted by 

td. Rise Time   

It is the time required for the response to rise from 0% to 100% of its final value. This is applicable for the 

under-damped systems. For the over-damped systems, consider the duration from 10% to 90% of the final 

value. Rise time is denoted by tr.   

As per definition, the magnitude of output signal at Rise times is 1. That is c(t) = 1, hence   

  

Peak Time   

It is the time required for the response to reach the peak value for the first time. It is denoted by tp. At t=tp 

the first derivate of the response is zero.   

As per definition at the peak time, the response curve reaches to its maximum value. Hence at that point,   



  

  

   



  

  

   

   

   

   

  

Peak Overshoot   

Peak overshoot Mp is defined as the deviation of the response at peak time from the final value of response. 

It is also called the maximum overshoot.   

Mathematically, we can write it as   

Mp=c(tp) − c(∞)   

   
Where,c(tp) is the peak value of the response, c(∞) is the final (steady state) value of the response.   

  

      



  

  

Settling time   



  

  

It is the time required for the response to reach the steady state and stay within the specified tolerance bands 

around the final value. In general, the tolerance bands are 2% and 5%. The settling time is denoted by ts.   

 The  settling  time  for  5%  tolerance band is –   

 The  settling  time  for  2% tolerance band is –   

   

Where, τ is the time constant and is equal to 1/δωn.   

Both the settling time ts and the time constant τ are inversely proportional to the damping ratio δ.   

Both the settling time ts and the time constant τ are independent of the system gain. That means even the 

system gain changes, the settling time ts and time constant τ will never change.   

   

Steady state error:-   

   

The deviation of the output of control system from desired response during steady state is known as steady 

state error. It is represented as ess. We can find steady state error using the final value theorem as follows.   

   

  



  

  

Where,   

  



  

  

E(s) is the Laplace transform of the error signal, e(t)   

A simple closed-loop control system with negative feedback is shown as follows.   

   

   

     

E (s ) = R (s)- B (s ) --- (i)   

   

B (s )= C (s ) H (s ) ---- (ii)   

   

C (s ) = E (s ) G (s ) ---- (iii)   

   

Applying value of B(s) of eq 2 into eq 1   

E (s ) = R (s)- C (s ) H (s )   

Applying value of C(s) of eq 3 into above eq   

   

   

E (s ) = R (s)- E (s ) G (s ) H (s )   

   

    

  
   

   

  
   
Therefore, steady-state error depends on two factors, i.e.   

(a) type and magnitude of R(s)   

(b) open-loop transfer function G(s)H(s) Types of input  

and Steady-state error:   

(i)Step Input:   

   

  



  

  

       



  

  

(ii) Ramp Input:   

   

    

  

Where,   

   

  

(iii) Parabolic Input:   

   

  
   

  
   

  



  

  

   



  

  

STATIC ERROR COEFFICIENT METHOD   

   

      

   

  
   

  



  

  

  

      



  

  

   

   

EFFECT OF POLE AND ZERO TO TRANSFER FUNCTION   

   

(i) Addition of a pole to the Forward Path Transfer Function:-  

(a) Increases the order of the system   

(b) Increases the overshoot   

(c) Reduces stability   

(d) Increase rise time   

(e) Reduces bandwidth  (ii) Addition of a pole to the Closed-Loop Transfer function:- (a) 

Increases rise time   

(b) Decreases overshoot  (iii) Addition of a zero to the Closed-Loop 

Transfer function:- (a) Decreases rise time   

(b) Increases overshoot   

(iv) Addition of a zero to the Forward path Transfer function:-   

(a) Added zero far away from imaginary axis – Overshoot large & damping is very poor   

(b) When zero moves to the right – Overshoot reduce & damping improves   

(c) When zero moves closer to the origin – Overshoot increases & damping improves  

PROPORTIONAL CONTROLLER   

The proportional controller produces an output, which is proportional to error signal.   

   



  

  

  



  

  

Therefore, the transfer function of the proportional controller is KP.  Where,   

U(s) is the Laplace transform of the actuating signal u(t)   

E(s) is the Laplace transform of the error signal e(t)   

KP is the proportionality constant   

   

The block diagram of the unity negative feedback closed loop control system along with the proportional 

controller is shown in the following figure.   

  

DERIVATIVE CONTROLLER   

The derivative controller produces an output, which is derivative of the error signal.   

   

  
Therefore, the transfer function of the derivative controller is KDs Where, KD is the derivative 

constant.   

The block diagram of the unity negative feedback closed loop control system along with the derivative 

controller is shown in the following figure.   



  

  

   



  

  

INTEGRAL CONTROLLER   

The integral controller produces an output, which is integral of the error signal.   

   

  

Where, KI is the integral constant.   

The block diagram of the unity negative feedback closed loop control system along with the integral 

controller is shown in the following figure.   

  

The integral controller is used to decrease the steady state error.   

   

PROPORTIONAL DERIVATIVE (PD) CONTROLLER   

The proportional derivative controller produces an output, which is the combination of the outputs of 

proportional and derivative controllers.   



  

  

   



  

  

Therefore, the transfer function of the proportional derivative controller is KP+KDs.   

The block diagram of the unity negative feedback closed loop control system along with the proportional 

derivative controller is shown in the following figure.   

  
The proportional derivative controller is used to improve the stability of control system without affecting 

the steady state error.   

PROPORTIONAL INTEGRAL (PI) CONTROLLER   

The proportional integral controller produces an output, which is the combination of outputs of the 

proportional and integral controllers.   

   

  

The proportional integral controller is used to decrease the steady state error without affecting the stability 

of the control system.   

PROPORTIONAL INTEGRAL DERIVATIVE (PID) CONTROLLER   

The proportional integral derivative controller produces an output, which is the combination of the outputs 

of proportional, integral and derivative controllers.   



  

  

   



  

  

The block diagram of the unity negative feedback closed loop control system along with the proportional 

integral derivative controller is shown in the following figure.   

   

   



  

  

CHAPTER#3 ANALYSIS OF STABILITY BY ROOT LOCUS TECHNIQUE   

   



  

  

STABILITY   



  

  

A system is said to be stable, if its output is under control. Otherwise, it is said to be unstable. A stable 

system produces a bounded output for a given bounded input.   

The following figure shows the response of a stable system.   

  
This is the response of first order control system for unit step input. This response has the values between 0 

and 1. So, it is bounded output. We know that the unit step signal has the value of one for all positive values 

of t including zero. So, it is bounded input. Therefore, the first order control system is stable since both the 

input and the output are bounded.   

TYPES OF SYSTEMS BASED ON STABILITY   

We can classify the systems based on stability as follows.   

   

Absolutely stable system   

Conditionally stable system   

Marginally stable system   

   

Absolutely Stable System   

If the system is stable for all the range of system component values, then it is known as the absolutely 

stable system. The open loop control system is absolutely stable if all the poles of the open loop transfer 

function present in left half of ‘s’ plane. Similarly, the closed loop control system is absolutely stable if all 

the poles of the closed loop transfer function present in the left half of the ‘s’ plane.   

   
Conditionally Stable System   

If the system is stable for a certain range of system component values, then it is known as conditionally 

stable system.   

   

Marginally Stable System   

If the system is stable by producing an output signal with constant amplitude and constant frequency of 

oscillations for bounded input, then it is known as marginally stable system. The open loop control system 

is marginally stable if any two poles of the open loop transfer function is present on the imaginary axis. 

Similarly, the closed loop control system is marginally stable if any two poles of the closed loop transfer 

function is present on the imaginary axis.   



  

  

ROUTH-HURWITZ STABILITY CRITERION   



  

  

Routh-Hurwitz stability criterion is having one necessary condition and one sufficient condition for stability. 

If any control system doesn’t satisfy the necessary condition, then we can say that the control system is 

unstable. But, if the control system satisfies the necessary condition, then it may or may not be stable. So, 

the sufficient condition is helpful for knowing whether the control system is stable or not.   

   
NECESSARY CONDITION FOR ROUTH-HURWITZ STABILITY   

The necessary condition is that the coefficients of the characteristic polynomial should be positive. This 

implies that all the roots of the characteristic equation should have negative real parts.   

Consider the characteristic equation of the order ‘n’ is -   

   

  

Note that, there should not be any term missing in the nth order characteristic equation. This means that the 

nth order characteristic equation should not have any coefficient that is of zero value.   

SUFFICIENT CONDITION FOR ROUTH-HURWITZ STABILITY   

The sufficient condition is that all the elements of the first column of the Routh array should have the same 

sign. This means that all the elements of the first column of the Routh array should be either positive or 

negative.   

ROUTH ARRAY METHOD   

If all the roots of the characteristic equation exist to the left half of the ‘s’ plane, then the control system is 

stable. If at least one root of the characteristic equation exists to the right half of the ‘s’ plane, then the 

control system is unstable. So, we have to find the roots of the characteristic equation to know whether the 

control system is stable or unstable. But, it is difficult to find the roots of the characteristic equation as order 

increases.   

So, to overcome this problem there we have the Routh array method. In this method, there is no need to 

calculate the roots of the characteristic equation. First formulate the Routh table and find the number of the 

sign changes in the first column of the Routh table. The number of sign changes in the first column of the 

Routh table gives the number of roots of characteristic equation that exist in the right half of the ‘s’ plane 

and the control system is unstable.   

Follow this procedure for forming the Routh table.   

   

Fill the first two rows of the Routh array with the coefficients of the characteristic polynomial as 

mentioned in the table below. Start with the coefficient of sn and continue up to the coefficient of s0.   

Fill the remaining rows of the Routh array with the elements as mentioned in the table below. Continue 

this process till you get the first column element of row s0.   

Note − If any row elements of the Routh table have some common factor, then you can divide the row 

elements with that factor for the simplification will be easy.   

The following table shows the Routh array of the nth order characteristic polynomial.   



  

  

  



  

  

      

Example   

Let us find the stability of the control system having characteristic equation,   

   

  

Step 1 − Verify the necessary condition for the Routh-Hurwitz stability. All the coefficients 

of the characteristic polynomial,   

      
are positive. So, the control system satisfies the necessary condition.  Step 2 − Form 

the Routh array for the given characteristic polynomial.   

  

Step 3 − Verify the sufficient condition for the Routh-Hurwitz stability.   

   



  

  

All the elements of the first column of the Routh array are positive. There is no sign change in the first 



  

  

column of the Routh array. So, the control system is stable.   

   

SPECIAL CASES OF ROUTH ARRAY   

We may come across two types of situations, while forming the Routh table. It is difficult to complete the 

Routh table from these two situations.   

The two special cases are −   

   
The first element of any row of the Routh’s array is zero.   

All the elements of any row of the Routh’s array are zero.   

Let us now discuss how to overcome the difficulty in these two cases, one by one.   

➢ First Element of any row of the Routh’s array is zero   

If any row of the Routh’s array contains only the first element as zero and at least one of the remaining 

elements have non-zero value, then replace the first element with a small positive integer, ϵ. And then 

continue the process of completing the Routh’s table. Now, find the number of sign changes in the first 

column of the Routh’s table by substituting ϵ tends to zero.   

➢ All the Elements of any row of the Routh’s array are zero In this case, follow 

these two steps −   

   

Write the auxiliary equation, A(s) of the row, which is just above the row of zeros.   

   

Differentiate the auxiliary equation, A(s) with respect to s. fill the row of zeros with  

these coefficients.   

   

ROOT LOCUS   

The Root locus is the locus of the roots of the characteristic equation by varying system gain K from zero 

to infinity.   

We know that, the characteristic equation of the closed loop control system is   

   

      



  

  

   



  

  

From above two cases, we can conclude that the root locus branches start at open loop poles and end at open 

loop zeros.   

ANGLE CONDITION AND MAGNITUDE CONDITION   

The points on the root locus branches satisfy the angle condition. So, the angle condition is used to know 

whether the point exist on root locus branch or not. We can find the value of K for the points on the root 

locus branches by using magnitude condition. So, we can use the magnitude condition for the points, and 

this satisfies the angle condition.   

Characteristic equation of closed loop control system is   

   

  



  

  

The angle condition is the point at which the angle of the open loop transfer function is an odd multiple of 



  

  

1800.   

Magnitude of G(s)H(s) is –   

   

  
The magnitude condition is that the point (which satisfied the angle condition) at which the magnitude of 

the open loop transfer function is one.   

   

THE ROOT LOCUS IS A GRAPHICAL REPRESENTATION IN S-DOMAIN AND IT IS 

SYMMETRICAL ABOUT THE REAL AXIS. Because the open loop poles and zeros exist in the s-

domain having the values either as real or as complex conjugate pairs.   

   

RULES FOR CONSTRUCTION OF ROOT LOCUS   

Follow these rules for constructing a root locus.   

Rule 1 − Locate the open loop poles and zeros in the‘s’ plane.   

Rule 2 − Find the number of root locus branches.   

   

We know that the root locus branches start at the open loop poles and end at open loop zeros. So, the number 

of root locus branches N is equal to the number of finite open loop poles P or the number of finite open loop 

zeros Z, whichever is greater.   

Mathematically, we can write the number of root locus branches N as   

N=P if P≥Z   

N=Z if P<Z   

Rule 3 − Identify and draw the real axis root locus branches.   

   

If the angle of the open loop transfer function at a point is an odd multiple of 1800, then that point is on the 

root locus. If odd number of the open loop poles and zeros exist to the left side of a point on the real axis, 

then that point is on the root locus branch. Therefore, the branch of points which satisfies this condition is 

the real axis of the root locus branch.   

Rule 4 − Find the centroid and the angle of asymptotes.   

   

If P=Z, then all the root locus branches start at finite open loop poles and end at finite open loop zeros.   

If P>Z, then Z number of root locus branches start at finite open loop poles and end at finite open loop 

zeros and P−Z number of root locus branches start at finite open loop poles and end at infinite open loop 

zeros.   

If P<Z , then P number of root locus branches start at finite open loop poles and end at finite open loop 

zeros and Z−P number of root locus branches start at infinite open loop poles and end at finite open loop 

zeros.   

So, some of the root locus branches approach infinity, when P≠Z. Asymptotes give the direction of these 

root locus branches. The intersection point of asymptotes on the real axis is known as centroid.   

We can calculate the centroid α by using this formula,   



  

  

   



  

  

Rule 5 − Find the intersection points of root locus branches with an imaginary axis.   

   

We can calculate the point at which the root locus branch intersects the imaginary axis and the value of K 

at that point by using the Routh array method and special case (ii).   

   

If all elements of any row of the Routh array are zero, then the root locus branch intersects the imaginary 

axis and vice-versa.   

   

Identify the row in such a way that if we make the first element as zero, then the elements of the entire 

row are zero. Find the value of K for this combination.   

   

Substitute this K value in the auxiliary equation. You will get the intersection point of the root locus 

branch with an imaginary axis.   

Rule 6 − Find Break-away and Break-in points.   

   

If there exists a real axis root locus branch between two open loop poles, then there will be a break-

away point in between these two open loop poles.   

If there exists a real axis root locus branch between two open loop zeros, then there will be a break-in 

point in between these two open loop zeros.   

Note − Break-away and break-in points exist only on the real axis root locus branches.   

Follow these steps to find break-away and break-in points.   

  Write K in terms of s from the characteristic equation 1+G(s)H(s)=0.   

  Differentiate K with respect to s and make it equal to zero. Substitute these  

values of s in the above equation.   

The values of s for which the K value is positive are the break points.   

   

Rule 7 − Find the angle of departure and the angle of arrival.   

   

The Angle of departure and the angle of arrival can be calculated at complex conjugate open loop poles and 

complex conjugate open loop zeros respectively.   



  

  

   
   



  

  

Example   

    
0     5     1         

Centroid =      2   

3     

The angle of asymptotes are      



  

  

Let us now draw the root locus of the control system having open loop transfer function,   

   

Step 1 − The given open loop transfer function has three poles at s = 0, s = -1, s = -5. It doesn’t have any 

zero. Therefore, the number of root locus branches is equal   

to the number of poles of the open loop transfer function.   

N=P=3   

  

The three poles are located are shown in the above figure. The line segment between s=−1, and s=0 is one 

branch of root locus on real axis. And the other branch of the root locus on the real axis is the line segment 

to the left of s=−5.   

   
Step 2 − We will get the values of the centroid and the angle of asymptotes by using the given formulae.   

   



  

  

   



  

  

Step 3 − Since two asymptotes have the angles of 60 and 300, two root locus branches intersect the 

imaginary axis. By using the Routh array method and special case(ii), the root locus branches intersects the 

imaginary axis at   

   
There will be one break-away point on the real axis root locus branch between the poles s =−1 and s=0. By 

following the procedure given for the calculation of break-away point, we will get it as s =−0.473.   

  

EFFECTS OF ADDING OPEN LOOP POLES AND ZEROS ON ROOT LOCUS   

The root locus can be shifted in‘s’ plane by adding the open loop poles and the open loop zeros.   

   

If we include a pole in the open loop transfer function, then some of root locus branches will move 

towards right half of ‘s’ plane. Because of this, the damping ratio δ decreases. Which implies, damped 

frequency ωd increases and the time domain specifications like delay time td, rise time tr and peak time 

tp decrease. But, it effects the system stability.   

   

If we include a zero in the open loop transfer function, then some of root locus branches will move 

towards left half of ‘s’ plane. So, it will increase the control system stability. In this case, the damping 

ratio δ increases. Which implies, damped frequency ωd decreases and the time domain specifications 

like delay time td, rise time tr and peak time tp increase.   

CHAPTER#4 FREQUENCY RESPONSE ANALYSIS   

   

        and       



  

  

FREQUENCY RESPONSE   



  

  

The response of a system can be partitioned into both the transient response and the steady state response. 

We can find the transient response by using Fourier integrals. The steady state response of a system for an 

input sinusoidal signal is known as the frequency response. In this chapter, we will focus only on the steady 

state response.   

   
If a sinusoidal signal is applied as an input to a Linear Time-Invariant (LTI) system, then it produces the 

steady state output, which is also a sinusoidal signal. The input and output sinusoidal signals have the same 

frequency, but different amplitudes and phase angles. Let the input signal be   

  

Where,   

 A is the amplitude of the input sinusoidal signal.   

   
ω0 is angular frequency of the input sinusoidal signal.   

   
We can write, angular frequency ω0 as shown below. ω0=2πf0   

Here, f0 is the frequency of the input sinusoidal signal. Similarly, you can follow the same procedure for 

closed loop control system.   

     

   
FREQUENCY DOMAIN SPECIFICATIONS   

The frequency domain specifications are   

❖ Resonant peak ❖ Resonant frequency 

❖ Bandwidth.   

   
Consider the transfer function of the second order closed control system as   



  

  

   



  

  

   

   

    



  

  

   



  

  

Resonant Peak:   

It is the peak (maximum) value of the magnitude of T(jω). It is denoted by Mr. At u=ur, the Magnitude of 

T(jω) is -   

  
   
Resonant peak in frequency response corresponds to the peak overshoot in the time domain transient 

response for certain values of damping ratio δ. So, the resonant peak and peak overshoot are correlated to 

each other.   

   

Bandwidth:   

It is the range of frequencies over which, the magnitude of T(jω) drops to 70.7% from its zero frequency 

value.   



  

  

At ω=0, the value of u will be zero.  Substitute, u=0 in 



  

  

M.   

  

Therefore, the magnitude of T(jω) is one at ω=0   

At 3-dB frequency, the magnitude of T(jω) will be 70.7% of magnitude of T(jω)) at ω=0   

   
   

   

  

Bandwidth ωb in the frequency response is inversely proportional to the rise time tr in the time domain 

transient response.   

   

POLAR PLOTS   

Polar plot is a plot which can be drawn between magnitude and phase. Here, the magnitudes are represented 

by normal values only.   



  

  

    
   



  

  

This graph sheet consists of concentric circles and radial lines. The concentric circles and the radial lines 



  

  

represent the magnitudes and phase angles respectively. These angles are represented by positive values in 

anti-clock wise direction. Similarly, we can represent angles with negative values in clockwise direction. 

For example, the angle 2700 in anti-clock wise direction is equal to the angle −900 in clockwise direction.   

   
RULES FOR DRAWING POLAR PLOTS   

   

Follow these rules for plotting the polar plots.   

• Substitute, s=jω in the open loop transfer function.   

• Write the expressions for magnitude and the phase of G(jω)H(jω)   

• Find the starting magnitude and the phase of G(jω)H(jω) by substituting ω=0. So, the polar plot starts 

with this magnitude and the phase angle.   

• Find the ending magnitude and the phase of G(jω)H(jω) by substituting ω=∞ So, the polar plot ends 

with this magnitude and the phase angle.   

• Check whether the polar plot intersects the real axis, by making the imaginary term of G(jω)H(jω) equal 

to zero and find the value(s) of ω.   

• Check whether the polar plot intersects the imaginary axis, by making real term of G(jω)H(jω) equal to 

zero and find the value(s) of ω.   

• For drawing polar plot more clearly, find the magnitude and phase of G(jω)H(jω) by considering the 

other value(s) of ω.   

   
Example:   

Consider the open loop transfer function of a closed loop control system.   



  

  

   



  

  

   

      

So, the polar plot starts at (∞,−900) and ends at (0,−2700). The first and the second terms within the brackets 

indicate the magnitude and phase angle respectively.   

   
Step 3 − Based on the starting and the ending polar co-ordinates, this polar plot will intersect the negative 

real axis. The phase angle corresponding to the negative real axis is −1800 or 1800. So, by equating the phase 

angle of the open loop transfer function to either −1800 or 1800, we will get the ω value as √2.   

   
By substituting ω=√2 in the magnitude of the open loop transfer function, we will get M=0.83.  Therefore, 

the polar plot intersects the negative real axis when ω=√2 and the polar coordinate is  (0.83,−1800).   

So, we can draw the polar plot with the above information.   

   
BODE PLOTS   

   

The Bode plot or the Bode diagram consists of two plots −  Magnitude plot   

 Phase plot   

In both the plots, x-axis represents angular frequency (logarithmic scale). Whereas, yaxis represents the 

magnitude (linear scale) of open loop transfer function in the magnitude plot and the phase angle (linear 

scale) of the open loop transfer function in the phase plot.   

   
The magnitude of the open loop transfer function in dB is -   

   
The phase angle of the open loop transfer function in degrees is -   

   



  

  

Basic of Bode Plots:   



  

  

The following table shows the slope, magnitude and the phase angle values of the terms present in the open 

loop transfer function. This data is useful while drawing the Bode plots.   

   
Case-1:   

  



  

  

   



  

  

The magnitude plot is a horizontal line, which is independent of frequency. The 0 dB line itself - is the 

magnitude plot when the value of K is one. For the positive values of K, the horizontal line will shift 20logK 

dB above the 0 dB line. For the negative values of K, the horizontal line will shift 20logK dB below the 0 

dB line. The Zero degrees line itself is the phase plot for all the positive values of K.   

   
Case-2:   

Consider the open loop transfer function G(s)H(s)= S   

Magnitude M=20logω dB   

Phase angle ϕ=900   

At ω=0.1rad/sec, the magnitude is -20 dB.   

At ω=1rad/sec, the magnitude is 0 dB.   

At ω=10 rad/sec, the magnitude is 20 dB.   

The following figure shows the corresponding Bode plot.   

  
   

   

   

  
   



  

  

The magnitude plot is a line, which is having a slope of 20 dB/dec. This line started at ω=0.1rad/sec having 



  

  

a magnitude of -20 dB and it continues on the same slope. It is touching 0 dB line at ω=1 rad/sec. In this 

case, the phase plot is 900 line.   

Case-3:   

Consider the open loop transfer function G(s) H(s)=1+sτ.   

   

, the magnitude is 0 dB and phase angle is 0 degrees.   

, the magnitude is 20logωτ dB and phase angle is 900.   

The following figure shows the corresponding Bode plot   

  

The magnitude plot is having magnitude of 0 dB up to ω=1τ rad/sec. From ω=1τ rad/sec, it is having a slope 

of 20 dB/decade. In this case, the phase plot is having phase angle of 0 degrees up to ω=1τ rad/sec and from 

here, it is having phase angle of 900. This Bode plot is called the asymptotic Bode plot. As the magnitude 

and the phase plots are represented with straight lines, the Exact Bode plots resemble the asymptotic Bode 

plots. The only difference is that the Exact Bode plots will have simple curves instead of straight lines.   

   

   
RULES FOR CONSTRUCTION OF BODE PLOTS:   

   

Follow these rules while constructing a Bode plot.   

   
• Represent the open loop transfer function in the standard time constant form.   

• Substitute, s=jω in the above equation.   

• Find the corner frequencies and arrange them in ascending order.   

• Consider the starting frequency of the Bode plot as 1/10th of the minimum corner frequency or 0.1 

rad/sec whichever is smaller value and draw the Bode plot upto 10 times maximum corner frequency.   



  

  

• Draw the magnitude plots for each term and combine these plots properly.   



  

  

• Draw the phase plots for each term and combine these plots properly.   

STABILITY ANALYSIS USING BODE PLOTS   

   

From the Bode plots, we can say whether the control system is stable, marginally stable or unstable based 

on the values of these parameters.   

• Gain cross over frequency and phase cross over frequency   

• Gain margin and phase margin   

   
Phase Cross over Frequency:   

The frequency at which the phase plot is having the phase of -1800 is known as phase cross over frequency. 

It is denoted by ωpc. The unit of phase cross over frequency is rad/sec.   

   

Gain Cross over Frequency:   

The frequency at which the magnitude plot is having the magnitude of zero dB is known as gain cross over 

frequency. It is denoted by ωgc. The unit of gain cross over frequency is rad/sec.   

   
The stability of the control system based on the relation between the phase cross over frequency and the 

gain cross over frequency is listed below.   

• If the phase cross over frequency ωpc is greater than the gain cross over frequency ωgc, then the control 

system is stable.   

• If the phase cross over frequency ωpc is equal to the gain cross over frequency ωgc, then the control 

system is marginally stable.   

• If the phase cross over frequency ωpc is less than the gain cross over frequency ωgc, then the control 

system is unstable.   

   
Gain Margin:   

Gain margin GM is equal to negative of the magnitude in dB at phase cross over frequency.   

GM= - 20log(Mpc)   

Where, Mpc is the magnitude at phase cross over frequency. The unit of gain margin (GM) is dB.   

Phase Margin:   

The formula for phase margin PM is PM=1800+ϕgc Where, ϕgc is the phase angle at gain cross over 

frequency. The unit of phase margin is degrees.   

   
****The stability of the control system based on the relation between gain margin and phase margin is listed 

below.   

   

• If both the gain margin GM and the phase margin PM are positive, then the control system is stable.   

• If both the gain margin GM and the phase margin PM are equal to zero, then the control system is 

marginally stable.   

• If the gain margin GM and / or the phase margin PM are/is negative, then the control system is unstable.   

   



  

  

ω   - Arg (1 + j0.1ω )  -tan-1  

(0.1 ω)   

-Arg (1 + j0.001ω) -tan- 
 1   

 (0.001 ω)  

Resultant   

50   -78.6°   -2.86°   - 81.46°   

100   - 84.2°   -5.7°   - 90°   

150   - 86.2°   - 8.5°   - 94°   

200   - 87.13°   - 11.3°   - 98°   

500   - 88.85°   -26.56°   -115.4°   

800   - 89.28°   - 38.65°   -127.93°   



  

  

1000   -89.48°   -45°   -134.42°   



  

  

Example: Sketch the Bode plot for the Transfer function  



  

  

G(s)   

Determine the a) Phase Margin   

b) Gain Margin   

c) Stability of the System   

   
Solution: Step-1 Put s =jω   

G(jω)   

The given transfer function is of type '0’ system. Therefore the initial slope of the Bode plots 0 db/decade. 

The starting point is given by.   

20 log10 K = 20 log10 1000 = 60 db   

 Corner frequencies   rad/sec.   

 rad/sec.   

   

Step 2 : Mark the starting point 60 db on y-axis and draw a line of slop 0 db/decade up to first corner 

frequency.   

Step 3 : From first corner frequency to second corner frequency draw a line with slope (0 – 20) = -20 

db/decade).   

Step 4 : From second corner frequency to next corner frequency (if given) draw a line having the slope -20 

+ (-20) = -40 db/decade.   

Step 5 : The magnitude plot is complete and now draw the phase plot by calculating the phase at different 

frequencies (as given in table).   

Step 6: From the bode plot   

From the point of intersection of magnitude curve with 0 db axis draw a line on  phase curve. This line cuts 

the phase curve at - 154°   

P.M = -154-(-180)   

= +26°   

Step 7: Gain margin G.M =∞   

Since, P.M = + 26° and gain margin =∞, the system is inherently stable.   

   

   

2000   - 89.72°   - 63.43°   -153.15°   

3000   - 89.8°   - 71.56°   -161.36°   

5000   - 89.88°   - 78.69°   -168.57°   

8000   - 89.92°   - 82.87°   -172.79°   



  

  

   
   

CLOSED LOOP FREQUENCY RESPONSE   

G(s)  

   C(s)     

Consider transfer 

function    

  

For unity feedback H(s) =1   

   

  
R ( s )     1     G ( s ) H  ( s )     



  

  

 

C ( s )     G ( s   )   

   
  

R ( s )     1     G ( s )     



  

  

   Put s= jɷ      

  

R (   j )     1     G (   j )     



  

  

C( j )    G( j )    

  

From figure   

   
From above equation   

  
   
Frequency response consists of 2 parts: (1) magnitude (2) phase angle. Both can be plotted against different 

values of ɷ.    



  

  

CHAPTER#5 NYQUIST PLOT   



  

  

   

NYQUIST PLOT   

   

Nyquist plots are the continuation of polar plots for finding the stability of the closed loop control systems 

by varying ω from −∞ to ∞. That means, Nyquist plots are used to draw the complete frequency response 

of the open loop transfer function.   

   
NYQUIST STABILITY CRITERION   

   

The Nyquist stability criterion works on the principle of argument. It states that if there are P poles and Z 

zeros are enclosed by the ‘s’ plane closed path, then the corresponding G(s)H(s) plane must encircle the 

origin P−Z times. So, we can write the number of encirclements N as,  N=P−Z   

❖ If the enclosed‘s’ plane closed path contains only poles, then the direction of the encirclement in the 

G(s)H(s) plane will be opposite to the direction of the enclosed closed path in the ‘s’ plane.   

❖ If the enclosed‘s’ plane closed path contains only zeros, then the direction of the encirclement in the 

G(s)H(s) plane will be in the same direction as that of the enclosed closed path in the ‘s’ plane.   

Let us now apply the principle of argument to the entire right half of the‘s’ plane by selecting it as a closed 

path. This selected path is called the Nyquist contour.   

   
We know that the closed loop control system is stable if all the poles of the closed loop transfer function are 

in the left half of the‘s’ plane. So, the poles of the closed loop transfer function are nothing but the roots of 

the characteristic equation. As the order of the characteristic equation increases, it is difficult to find the 

roots. So, let us correlate these roots of the characteristic equation as follows.   

   

• The Poles of the characteristic equation are same as that of the poles of the open loop transfer function.   

• The zeros of the characteristic equation are same as that of the poles of the closed loop transfer function.   

   
We know that the open loop control system is stable if there is no open loop pole in the right half of the ‘s’ 

plane. i.e. P=0 N=−Z   

   
We know that the closed loop control system is stable if there is no closed loop pole in the right half of the 

‘s’ plane. i.e. Z=0 N=P   

   
Nyquist stability criterion states the number of encirclements about the critical point (1+j0) must be equal 

to the poles of characteristic equation, which is nothing but the poles of the open loop transfer function in 

the right half of the ‘s’ plane. The shift in origin to (1+j0) gives the characteristic equation plane.   

RULES FOR DRAWING NYQUIST PLOTS   

   

Follow these rules for plotting the Nyquist plots.   



  

  

  Locate the poles and zeros of open loop transfer function G(s)H(s) in ‘s’ plane.   



  

  

   
• Draw the polar plot by varying ω from zero to infinity. If pole or zero present at s = 0, then varying ω 

from 0+ to infinity for drawing polar plot.   

   
• Draw the mirror image of above polar plot for values of ω ranging from −∞ to zero (0− if any pole or 

zero present at s=0).   

   

• The number of infinite radius half circles will be equal to the number of poles or zeros at origin. The 

infinite radius half circle will start at the point where the mirror image of the polar plot ends. And this 

infinite radius half circle will end at the point where the polar plot starts.   

   
After drawing the Nyquist plot, we can find the stability of the closed loop control system using the Nyquist 

stability criterion. If the critical point (-1+j0) lies outside the encirclement, then the closed loop control 

system is absolutely stable.   

   
STABILITY ANALYSIS USING NYQUIST PLOTS   

   

From the Nyquist plots, we can identify whether the control system is stable, marginally stable or unstable 

based on the values of these parameters.   

   

• Gain cross over frequency and phase cross over frequency   

   
• Gain margin and phase margin   

   
Phase Cross over Frequency   

The frequency at which the Nyquist plot intersects the negative real axis (phase angle is 1800) is known as 

the phase cross over frequency. It is denoted by ωpc.   

   

Gain Cross over Frequency   

The frequency at which the Nyquist plot is having the magnitude of one is known as the gain cross over 

frequency. It is denoted by ωgc.   

   
The stability of the control system based on the relation between phase cross over frequency and gain cross 

over frequency is listed below.   

   

❖ If the phase cross over frequency ωpc is greater than the gain cross over frequency ωgc, then the control 

system is stable.   

❖ If the phase cross over frequency ωpc is equal to the gain cross over frequency ωgc, then the control 

system is marginally stable.   

❖ If phase cross over frequency ωpc is less than gain cross over frequency ωgc, then the control system is 

unstable.   

Gain Margin   

The gain margin GM is equal to the reciprocal of the magnitude of the Nyquist plot at the phase cross over 

frequency.   

   

   



  

  

 

(2s  

  

   

1)   



  

  

Where, Mpc is the magnitude in normal scale at the phase cross over frequency.   



  

  

   
Phase Margin   

The phase margin PM is equal to the sum of 1800 and the phase angle at the gain cross over frequency.   

PM=1800+ϕgc Where, ϕgc is the phase angle at the  

gain cross over frequency.   

   
The stability of the control system based on the relation between the gain margin and the phase margin is 

listed below.   

   
❖ If the gain margin GM is greater than one and the phase margin PM is positive, then the control system 

is stable.   

❖ If the gain margin GMs equal to one and the phase margin PM is zero degrees, then the control system 

is marginally stable.   

❖ If the gain margin GM is less than one and / or the phase margin PM is negative, then the control system 

is unstable.   

   

Example:- Draw the nyquist plot and assess the stability of the closed loop system whose open   

K   

 loop  transfer   function   is   G(s)   H(s)    =     

s    

   

  



  

   

       

EFFECT OF ADDITION OF POLES & ZEROS TO G(s)H(s) ON THE SHAPE OF   

NYQUIST PLOT     

    

a)   Addition of poles at s=0: -   It will affect the stability of the closed loop system adversely.  

A system that has a loop transfer function with more than one pole at s=0 is likely to be  

unstable or difficult to stabilize.    

b)   Addition of finite non zero pole: -   It shifts the phase of nyqui st plot by  - 90   at ɷ= ∞.  

The stability is adversely affected.    

c)   Addition of a Zero:  -   The effect of addition of zero is to rotate the nyquist plot by 90  in  

the counter clockwise direction without effecting the value at ɷ = 0. So it has the effect  

of reduci ng the overshoot & the general effect of stabilization.    

    



  

  

CONSTANT MAGNITUDE CIRCLE (M- CIRCLE)   

    



  

  

  

If M = 1, then from the above equation we obtain X = -1/2.This is the equation of a straight line parallel to 

the Y-axis and passing through the point (-1/2, 0).   

   

  

Divide both the sides by (1-M2)   

  

The constant M locii for different value of M. It is clear that:   

i. The locii are symmetrical wrt to M= 1   

ii. The M-circles for M>1 are on the left side of the line M=1 and for M<1 the constant M- circles are on 

the right side of the line M =1.   



  

  

   



  

  

CONSTANT PHASE CIRCLE (N- CIRCLE):   

   

    

It is observed that   

a) The centre is lying always at a distance x= -1/2 and y depends upon the phase shift.   

b) All the circles passes through -1 as well as 0.   

   

    



  

  

  



  

  

NICHOLS CHART   

   

• The chart consisting of constant-magnitude loci and constant phase-angle loci in the log- magnitude 

versus phase diagram is called Nichols chart.   

• The critical point (-1+j0) is mapped to the Nichols chart as the point (0 dB, 180degree). The Nichols 

chart contains curves of constant closed-loop magnitude and phase angle.   

• The designer can graphically determine the phase margin, gain margin, resonant peak magnitude, 

resonant peak frequency, and bandwidth of the closed loops system from the plot of the open-loop locus.   

• The Nichols chart is symmetric about -180 degree axis. The constant-magnitude loci and constant phase-

angle loci repeat for every 360 degree, and there is a symmetry at every 180 degree. The constant-

magnitude loci are centred about the critical point (0 dB, -180 degree).   

• The intersection of the open-loop frequency response curve and the constant-magnitude loci and 

constant phase-angle loci give the values of the magnitude and the phase angle of the closed loop 

frequency response at each frequency point.   

• If the open-loop frequency response curve does not intersect the constant-magnitude loci but is tangent 

to it, then the resonant peak value of the closed-loop frequency response is given by that loci. The 

resonant peak frequency is given by the frequency at the point of tangency.   

• The phase crossover point is the point where the open-loop locus intersects the -180 degree axis, and 

the gain crossover point is the point where the locus intersects the 0 dB axis.   

• The phase margin is the distance (measured in degrees) between the gain crossover point and the critical 

point (0 dB, -180 degrees).   

• The gain margin is the distance (in decibels) between the phase crossover point and the critical point. 

The frequency at the intersection of the open-loop locus and the -3 dB locus gives the bandwidth.   



  

       


