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CHAPTER#1
SIGNAL FLOW GRAPH

BASIC DEFINITION IN BLOCK DIAGRAM MODEL.:

Block diagram: It is the pictorial representation of the cause  -and-response relationship between input and
output of a physical system.

Input e——|  Block j—— Output RS e— G [—> Cfs)
(a) (b)
Fig. (a) A block diagram representation of a system and
C(s)=G(s)R(s) (b) A block diagram representation with

gain of a system

Output: The value of input multiplied by the gain of the system.

Summing point: It is the component of a block diagram model at which two or more signals can be added or

subtracted. In Fig, Forward path e | , inputs R(s) and
Take=cff point .
B(s) have been - given to a

T,

summing pointand R(s! Goish CiS) it output
signal is  E(s).
E(s)=R(s)—B(s) Summing Bis)

point

Hiss )

A - ccdback path

Fig. A block diagram representation of a system showing its different components

Here, Take-




Forward path: It is the direction of signal flow from input towards output.

Feedback path: It is the direction of signal flow from output towards input.

off point: It is
the
component of
a block
diagram
model at
which a signal
can be taken
directly and
supplied  to
one or more
points as
shown in Fig.




RULES EQR REDUCTION QE BLOCK DIAGRAM MQDEL.:
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PROCEDURE FOR REDUCTION OF BLOCK DIAGRAM MODEL.:

Step 1: Reduce the cascade blocks.

Step 2: Reduce the parallel blocks.

Step 3: Reduce the internal feedback loops.

Step 4: Shift take-off points towards right and summing points towards left.

Step 5: Repeat step 1 to step 4 until the simple form is obtained.
C(s)

Step 6: Find transfer function of whole system as :
R(s)

PROCEDURE FOR FINDING OUTPUT OF BLOCK DIAGRAM MODEL WITH MULTIPLE
INPUTS:

Step 1: Consider one input taking rest of the inputs zero, find output.

Step 2: Follow step 1 for each inputs of the given Block Diagram model and find their corresponding outputs.

Step 3: Find the resultant output by adding all individual outputs.

Example 1:- Find C(s)/R(s) using block diagram reduction rules




(1) R( Gy Gy

Hs

—=> C(S)

sution: By eliminating the feed-back paths, we get

+ Gy G2 5
R(S 1+GH 2 T 6E TG

Hy

Combining the blocks in series, we get

+ GGy
R(S. A+GH)A+GH) [ 2¢O
Hy
Eliminating the feed back path, we get
GG,
1+ G,H,)(1+G,H
R(S)—> (L4 631)((;2 2Ha) —>((5)
Harama e
Gilss
RO)™ GFGH)IA+ Gl + GiGoFs > C(5)
i | 1@ GiGi

TRE) (O + G HDA + GoHy) + Gy Gl




Example-2:- Determine output C due to inputs R & U using the superposition method.

v
B 4 G, __Lé Gy C

PutU=0
The system reduces to

i

E tc{/\ GGy L

Step X the output C, due to input R 1s Cp = [G,G, /(1 + G,G,)|R.

G,

Or=
s
'

Stepda: Put R=0
Stepdb:  Put — | into a block, representing the negative feedback effect:

Rearrange the block diagram:

U + ™\ 0' Cy
T G,

U+ G Ce

Step 4 the output €, due to input U is Cp, =[Gy /(1 + GGy,

Let the ~ 1 block be absorbed into the summing point:

Step & The total output is C=C, + C,

GG, Gy
- — R+ | ——|U
1+ GG, 1+ GG,

Gy '
- [m]lﬁk’ Ul




SIGNAL FLOW GRAPHS (SEGS)
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It is a pictorial representation of a system that graphically displays the signal transmission in it.

Basic Definitions in SFGs:

Input or source node: It is a node that has only outgoing branches i.e. node ‘r’.
Output or sink node: It is a hode that has only incoming branches i.e. node ‘c’.

Chain node: It is a node that has both incoming and outgoing branches i.e. nodes ‘x1’, ‘x2’,‘x3’,‘x4’,‘x5’and

‘x6’.

Gain or transmittance: It is the relationship between variables denoted by two nodes or value of a branch.,
Transmittances are ‘t1’, ‘t2’,‘t3’,“ts”,‘ts’and “ts’.

Forward path: It is a path from input node to output node without repeating any of the nodes in between them.
There are two forward paths, i.e. path-1:‘r-X1-X2-X3-X4-X5-Xe-¢” and path-2:‘r-X1-X3-Xa-X5-Xe-C’.

Feedback path: It is a path from output node or a node near output node to a node near input node without repeating
any of the nodes in between them.

Loop: Itis a closed path that starts from one node and reaches the same node after trading through other nodes.
There are four loops, i.e. l00p-1:°x2-X3-X4-X1’, loop-2:‘Xs-Xe- X5, l00p-3:°X1-X2-X3-X4-X5-Xe-X1" and loop-4:‘x1-X3X4-
X5-X6-X1".

Self Loop: It is a loop that starts from one node and reaches the same node without trading through other nodes i.e.
loop in node ‘x4’ with transmittance ‘tss’.

Path gain: It is the product of gains or transmittances of all branches of a forward path. The path gains are P1 =

titotatats (for path-1) and P2 = totstats (for path-2).

Loop gain: It is the product of gains or transmittances of all branches of a loop. There are four loops, i.e. L1 = totsts,
L2 = -tst7, L3 = -titotstatsts, and L4 = -totstatsts.

Dummy node: If the first node is not an input node and/or the last node is not an output node than a node is
connected before the existing first node and a node is connected after the existing last node with unity
transmittances. These nodes are called dummy nodes. ‘r’ and ‘¢’ are the dummy nodes.

Non-touching Loops: Two or more loops are non-touching loops if they don’t have any common nodes between
them. Ly and L2 are non-touching loops

PROPERTIES OF SEGS:

+ Applied to linear system

« Arrow indicates signal flow

+ Nodes represent variables, summing points and take-off points




« Algebraic sum of all incoming signals and outgoing nodes is zero
« SFG of a system is not unique
+ Overall gain of an SFG can be determined by using Mason’s gain formula




SFG FROM BLOCK DIAGRAM MODEL:
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1 S(s) (=
Eals) —>£

© |

Step-1: All variables and signals are replaced by nodes.
Step-2: Connect all nodes according to their signal flow.

Step-3: Each of gains is replaced by transmittances of the branches connected between two nodes of the forward
paths.

Step-4: Each of gains is replaced by transmittances multiplied with (-1) of the branches connected between two
nodes of the forward paths.

- e

MASON’S GAIN FORMULA:

Transfer function of a system=

Where,




N= total number of forwardpaths

Py= path gain of k'™ forward path

A=1 - (3loop gains of all individual loops) + (3 gain product of loop gains of all possible two non- touching loops)
- (3 gain product of loop gains of all possible three non-touching loops) + ...

A= value of A after eliminating all loops that touches k™ forward path




Example:- Find overall transfer function of system using Mason’s gain formula
g

2 Number of forward paths, N = 2.

@ First forward pathis -y1 — y2 — ¥s — Y4 — ¥s — VYo
@ First forward path gain, py = abede.

@ Second forwardpathis -y — Y2 — Y3 — ¥s — ¥s-

@ Second forward path gain, pa = abge.

% Number of individual loops, L = 5.
° Loops are - Y2 —Ys Y2, Ys > Ys Y3, Ys > Ys— Ys — Vs,
Ys = Ys > Ya andys — Ys.

= Loop gains are -l = bj, lg = gh,ly =cdh, ly =di andlg = f.
= Number of two non-touching loops = 2.

@ First non-touching loops pairis - y2 — ya — Y2, Y4 — Ys — Y4.
@ Gain product of first non-touching loops pair, 1l = bjdi

@ Second non-touching loops pairis - y2 — ¥3 — Y2, ¥Ys — ¥Ys -

= Gain product of second non-touching loops pairis - i1l = bj f

Higher number of (more than two) non-touching loops are not present in this
signal flow graph.

We know,

A = 1 — (swm of all individual loop gains)
+(sum of gain products of all possible two nontouching loops)
—(swm of gain products of all possible three nontouching loops)+-. . .

Substitute the values in the above equation,

A =1— (bj +gh +cdh +di + f) + (bjdi + bjf) — (0)

= A =1— (bj + gh +cdh +di + f) + bjdi + bjf
There is no loop which is non-touching to the first forward path.
So, A; = 1.

Similarly, As = 1. Since, no loop which is non-touching to the second forwarcj
path.

Substitute, N = 2 in Mason’s gain formula

C(s) _ T2,PA,

s s A
T — C'(s) o PiAy + PyAs
T R(s) A
Substitute all the necessary values in the above equation.
T = C(s) (abede)l + (abge)l
T R(s) 1— (bj +gh+ecdh +di+ f)+bjdi +bjf
U C(s) (abede) + (abge)

" R(s) 1— (bj+gh+cdh +di+ f) + bjdi + bjf

Therefore, the transfer function is -

C(s) (abede) + (abge)

T = =
R(s) 1— (bj +gh +cdh +di + f) + bjdi + bjf




CONSTRUCTION OF SIGNAL FLOW GRAPH FROM ALGEBRAIC EQUATIONS:-

Let us construct a signal flow graph by considering the following algebraic equations

Y2 = any + a0y
Ys = auyr + aszlys
Y4 = azglys

Ys = QqsYs + A3sYs

Yo = Qselys

There will be six nodes (yy, v2, Ya, Y4 Y and yg) and eight branches in this
signal flow graph. The gains of the branches are ay5, 853, 834, 845, 56, 842, 353

and azs,

To get the overall signal flow graph, draw the signal flow greph for each
equation, then combine all these signal flow graphs and then follow the steps

given below -
Step 1 - Signal flow graph for y2 = a1ay; + a4y is shown in the following

fiqure.

€ty
- —> - - -
Y Y2 b Va ¥ Yo
Xy
Step 2 Signal flaow graph for gys gz V¢ agaye 19 shown in the following
figure
Qas
- - Rl
Y Y2 > Ya Vs Ve
“asa
Stop X — Signal low graph for ye Gaawa 15 shown in the following igure
asza
Y ™Y .+. o Y

Yi Yz Y3 Ya Vs Ye




Step 4 — Signal low graph for ys = a4slys + assys 1s shown in the following
figure.

Qass

Qus

Y1 Y2 Y3 Ya Ys Yo

ES - . < —

Y1 Y2 Y3 Ya Ys Ye

Step 6 — Signal low graph of overall system is shown in the following fiqure.

A3s

QAse







CHAPTER#2 TIME RESPONSE ANALYSIS

Gt)

. /\ 7 T . T

Transient state Steady state
Cis (1) Css (1)

undefined :t=0)
()=

0 t=0)
J(S)=1
&it)
3
t

0 :r<0]

u(t)= .

K :t=0]

U(.s)=£
s




TIME RESPONSE OF CONTROL SYSTEM:
Time response c(t)is the variation of output with respect to time. The part of time response that goes to zero after

large interval of time is called transient response cw(t). The part of time response that remains after transient
response is called steady-state response Css(t).

STANDARD TEST SIGNALS
1. Impulse Signal: An impulse signal 5(t) is mathematically defined as follows.

Laplace transform of impulse signal is

2. Step Signal: A step signal u(t) is mathematically  defined as follows.

Laplace transform of step signal is

3. Ramp Signal: A step signal r(t) is mathematically defined as follows.




u(t) 4

0 :t< 0.

-
(8.10) "= g t>0)

Laplace transform of ramp signal
[

R(s)= £
2
S rit) 4
t
Als)= £
4. Parabolic Signal A step signal a(t) is s’ mathematically defined as follows.
O\ Ky & Of
alt)=kr’ :rzOI at)
2 )
M
Laplace transform of parabolic signal is

TIME RESPONSE OF 15T ORDER SYSTEM:

R(S) 4 1 C(S)




We know that the transfer function of the closed loop control system has unity
negative feedback as,

Cls) _ _Gls)
R(s) 1+G(s)

Substitute, G(s) = % in the above equation,

C(s) & 1
R(s) 1+%_8T+1

The power of s is one in the denominator term. Hence, the above transfer
function is of the first order and the system is said to be the first order
system,.

We can re-write the above equation as

1
sT +1

Cl(s) = ( ) R(s)

Where,

8 C(s) is the Laplace transform of the output signal ¢(t),
@ R(s) is the Laplace transform of the input signal r(t), and

2 Tis the time constant.

Follow these steps to get the response (output) of the first order system in the
tme domain.

@ Take the Laplace transform of the input signal r(t).

T+
o Substitute R(s) value in the above equation.

“ Consider the equation, C'(s) = (—1—) R(s)

@ Do parval fractions of C(s) if required.

@ Apply inverse Laplace transform to C(s).




(i) Unit Step Response:-
Consider the unit step

signal as y an
input to R(s) = 2
first Consider the equation, C'(s) = (‘,—Tl‘—l) R(s)
order :
Substitute, R(s) = + in the above equation.
system.
So, ('(s):< . )(l):;
sT + 1 s s(sT + 1)
r(t)=u(t)
Do partial fractions of C(s)
(Ts):-———l——— :-é-+ 2
s(sT + 1) s sT+1
1 _A(sT+1)+Bs
s(sT+1) s(sT + 1)
1 T 1 T
) C{s} - - — _
On both the sides, the s sT+1 s T(s+ 1
same. So, they will get
Hence, equate the numerator = C(s) = 1 1
§F s+ %

1=A(sT+1)+Bs
By equating the constant terms on both the sides, you will get A = 1.
Substitute, A = 1 and equate the coefficient of the s terms on both the sides.

e(t) = (1 —e"( ))u{t]

0=T+B

H|~

denominator term is the
cancelled by each other.

terms.




=

B=-T Substitute, A =1 and B = —T in partial fraction expansion of C(s)

Apply inverse Laplace transform on both the sides.




The unit step response, c(t) has both the transient and the steady state terms.

The transient term in the unit step response is -
~(+)
cir(t) = —e ‘T u(t)
The steady state term in the unit step response is —

Ces(t) = w(t)

The following figure shows the unit step response

c(t)
A

-
o t

The value of the unit step response, ¢(t) is zero at t =0 and for all negative values of't. It is gradually
increasing from zero value and finally reaches to one in steady state. So, the steady state value depends
on the magnitude of the input.

(ii) Unit impulse response:
Consider the unit impulse signal as an input to the first order system.

So, r(t)=6(t)
Apply Laplace transform on both the sides.
R(s) =1

Consider the equation, C'(s) = (5T1+1 ) R(s)

Substitute, R(s) = 1 in the abowve equation.

1 1
Clo) = (T—I—l) W=71

Rearrange the above equation in one of the standard forms of Laplace transforms.

1 1 1
C(S}Zm:’0(8)=?(s+l)
T T

Applying Inverse Laplace Transform on both the sides,

e(t) = %e(_?)u(t)




The unit impulse response is shown in the following figure.
c(t)

1
T

0 t

The unit impulse response, c(t) is an exponential decaying signal for positive values of ‘t” and 1t is
zero for negative values of .

TIME RESPONSE OF QND ORDER SYSTEM

Coglsider the following block diagram of closed loop control system. Here, an open loop transfer function,
on /s(s+28mn) is connected with a unity negative feedback.

R(s) + w2 C(s)
" 5Gs + 260,)

We know that the transfer function of the closed loop control system having
unity negative feedback as

C(s) _ Gls)
R(s) 1+G(s)

W

Substitute, G(S) — "(H,m)

in the above equation.

¢  (womm) v

R(s) 1+(L) 252+2ans+w,21




STEP RESPONSE OF 2"” ORDER SYSTEM

Consider the unit step signal as an input to the second order system. Laplace transform of the unit step

signal is,
] C'(s) Wi
T(‘-") == = I e 3
R(s) &%+ 2(wns+ wj
i , . |
Now, r(t) =1or R(s) = -
S
1 w
., C'(S) Sz =50 - — Ll >
§ 8§42 wps+ w3
1 u},z:
s 4 2(wns + gzwg + wﬁ — g%‘;’l
NP
- 1 . “n
s -
s (s+ wn) +u2 (1- Q)

y 2 : 2 2 4
(s + (wn) +“"‘E (= Kz) — (8 + (wn) "Lw;ﬁgz

: 9 :
3{(5“"@“3?1) +W;‘){(1_‘32)}
; ' o b
(s + (wn)” +wp (1= (%) — &

_2‘5‘5"‘"“ — Wil +""-"n‘s

Putting, wg = wy/1 — (2

L l B s + (wn B {wn

& (a4 Luwn) +uw? (s—!-gwn)‘?—:—wg

L 1 B § + (Wwy B Cwn . Wy

- (s + L,wn)z — wﬁ Wag (s + g'wn)z — w‘%

Taking the inverse Laplace Transform of above equation, we get

1 s+ (w g w
£l [Cf(ls)] e e 5 T (Whp __ K% ‘ d2

S (3 ok ';wn_) “ W‘é W ( - gwn_) -+ W

Ao

V]




-,'_] ‘ 1 \ e o ol ¢ “w w
: 1 S+ (Wi W
'_ ( ‘ : ‘.‘_1 g n . W

s+ (wn)” +wy :
wd (s +(wn)

L e B L. Wr

t .
- S1n wyt




The above expression of output c(t) can be rewritten as

c(t) =1 —e " | coswqt + ; » sin wyt
1—¢2

e~ Cwnt : ;
1 —=¢€*

[Say. ( = cos ¢, hence, /1 — (% =sin (,7):|

set)=1-— (sin ¢ cos wyt + cos ¢ sin wyt)

v1—(2

sin (wat + @)

=g

(a) C=1 over damped

Poles are:

$i2 =70, ‘:i\j‘,: -1)

Graphically. the poles of an over damped system 1s shown as follows.

1™ s plane
A

“’v(g t \"F)

" afeE)




(b) =1 crtically damped
Poles are:

5, =—0

1 n

Graphically. the poles of an critically damped system 1s shown as follows.




| s plane
A

| %
Q

"'ll

(c¢) <1 under damped
Poles are:

S, =—0, (.? :JJI—: 2 ]
=8, =50, T j0y

Where, @, =Damped natural frequency

-2
0, =0\1-C

Graphically. the poles of an critically damped system 1s shown as follows.

Jo s plane

-y

Here. tan f = —
TR

(d) =0 un-damped
Poles are:

5, = -1jo,




b

J

o

s plane

o




TIME RESPONSE SPECIFICATION

c(t)
A
1.05 ' iMP P
1 ! \ ? \ B —
1 1 I \ ot
0.95 i \J
0.5 f---m-m--- {1
H ! i -
0 ta t, tp ts t

Delay Time

It is the time required for the response to reach half of its final value from the zero instant. It is denoted by
tq. Rise Time

It is the time required for the response to rise from 0% to 100% of its final value. This is applicable for the
under-damped systems. For the over-damped systems, consider the duration from 10% to 90% of the final
value. Rise time is denoted by tr.

As per definition, the magnitude of output signal at Rise times is 1. That is c(t) = 1, hence

'._iwlf?{"'
# sin {(w‘,, AV 1 — gz) t, + (f)}
— 'g-

(;_L.w';;f,v :
= —p——==in { (w,, 1 — g2> tr + r.‘)} =)
v1—(2

: /- 9
W \/ t— (2

Peak Time

It is the time required for the response to reach the peak value for the first time. It is denoted by tp. At t=tp
the first derivate of the response is zero.

As per definition at the peak time, the response curve reaches to its maximum value. Hence at that point,




delt
dt

—

C—g‘wnt SR
Now, ('(f) =1-— ﬁh‘in { (wn\/l — gz) t+ (7}
— 'g—

de(t) g Cwnt s —
3 (lt — —m Wi .l - gz('()s{(w;] .I. —gz)t'f_(‘)}

(—Cw e {wnt Su—
_ L sin {(w‘n\/l == QZ) t+ G‘"}

1—¢2
; le(t
Putting. (((t) =0
C

(_«,_‘:W‘r:f — ;
—_— [—w,, v/ 1—(2cos { (wn v1— gz) t+ r:)} + (wp sin { (wn V1— g3) i+ c‘)}]




wpV/ 1 — (2% cos { (w‘“\/l — gz) t+ r.‘)} = (wy Sin { (w,t\/l — gz) t+ (,-‘)}
. 1—¢2
= tan [(w,. 1 — gl) — o] = \/—S— = tan @
S
(W‘n\/l s gz) t =nm
Where. n=1.2.3..
. T
Wi IS Sz

Peak Overshoot

Peak overshoot Mp is defined as the deviation of the response at peak time from the final value of response.

It is also called the maximum overshoot.

Mathematically, we can write it as

Mp=c(to) — (o)

Where,c(tp) is the peak value of the response, c(x)

is the final (Steady state) value of the response.

e twntp . .
('(t)”u”- = ,I, — ﬁ S111 |:(§~‘n \/ J. — l‘sz) tp - (j:|
-2 g-—
e —c("-"n \;rl =
> wpy1—C= . — T
= c()mar =1 — —— sin (w‘n 1— gz) ———t¢
1—¢*= Wh \/1 —&
(mas = 1 = ~S—sin (m + 6) =1 — S (= sing)
= cB)moz =1 ——F/—==s0({7 4+ @) =1 ——==(—810 9,
1—¢? =gx
€ Vi-¢2 ) € \’l—7 — — T -
=1+ =sing =14+——=—+/1-(3=1+e V1-¢
1—¢2 v1-¢2

.\‘[p == (‘(t)n)ﬂ_r S J. — (l -+ 6— 1-¢2

Cm

:. J\[p =€ \‘/‘l“l:




Settling time




It is the time required for the response to reach the steady state and stay within the specified tolerance bands
around the final value. In general, the tolerance bands are 2% and 5%. The settling time is denoted by ts.

The settling time for 5% tolerance band is —

The settling time for 2% tolerance band is —

Where, 7 is the time constant and is equal to 1/6on.
[T Both the settling time ts and the time constant T are inversely proportional to the damping ratio §.

Both the settling time ts and the time constant T are independent of the system gain. That means even the
system gain changes, the settling time ts and time constant t will never change.

Steady state error:-

The deviation of the output of control system from desired response during steady state is known as steady
state error. It is represented as ess. We can find steady state error using the final value theorem as follows.

ess = lim e(t) = lim E(s)

L—00 s—0




Where,

»Cs)

a




E(s) is the Laplace transform of the error signal, e(t)
A simple closed-loop control system with negative feedback is shown as follows.

E(@)=R(s)-B(s)--(i)

B (s)=C(s)H(s)---(ii)
C(s)=E(s)G(s)----(iii)

Applying value of B(s) of eq 2 into eq 1
E(s)=R(s)-C(s)H(s)

Applying value of C(s) of eq 3 into above eq

ES)=R(S)-E(5)G(S)H(s)

R(s)
1+G(s)H (s)

Steady-state error.

= E(s)=

e, =_1ime('t)=1.inésE (s)

4 ; sR(s)
e, =lmsE(s)=lm———
= s=0 :—:~01+G(S)H(S)

Therefore, steady-state error depends on two factors, i.e.

(@) type and magnitude of R(S)
(b) open-loop transfer function G(s)H(s) Types of input

and Steady-state error:

(i)Step Input:




o(2)
S i A

Cai=

=01+ G(s)H(s) 01+G(s)H(s)

A A
—=e. = - = —
= 1+1_maG(.s)H(s) 1+K,

Where.
K,,:l_jngG('s)H(s)




(i) Ramp Input:

Where,

(iii) Parabolic Input:

. \ s> ) . A
e, =lm 22 _=lim—
o sal+ G|S|Hl5’ s-.:-s‘[l-i'-G(‘S.)H(S}]

=e,=lm—— A
1205° +5°G(s)H(s)

e, = - 4
© Ims*G(s)H(s)

J—

A
K,
Where,

{ =}i-x£s:G[s)H(s)




Types of input and steady-state error are summanzed as follows.

Error Constant Equation Steady-state error (e,,)
Position Ervor Constant (Kz) K,=lmG(s)H(s) o= 4

=0 3 1+ K}'
Veloaty Error Constant (K,) K, =lmsG(s)H(s)

s=0 €y =

Acceleration Error Constant (K,) K‘ ™ limszG(s')H('s')
' =0 0

)
I

Pa] 2




STATIC ERROR COEFFICIENT METHOD

The general form of G(s)H(s) 1s

, B K(1+TLs)(1+5s)...(1+T,s)
G )= T o)1+ o) (15 o)

Here. = no. of poles at onigin (s = 0)

Tyvpe 0
; K(1+Ts)(1+Ts). . (1+T
GLS)H(S): ( ls)( -S) ( "S)
(1+T,s)(1+T;s)...(1+1,s)
Here.
KP=}i_1;13G(s‘)H('s)=K
Therefore.
A
P
1+ K
Typel
K(1+Ts)1+Ts)..(1+T
G(‘S)H(S)= ( 15)( -S) ( n‘s)
e s(1+T,s)(1+T;s)...(1+T,s)
Here.
K,,-=l’i113.SG(S)H(:S)=K
Therefore.

N
I
7| b




1vpe 2

K(14Ts)(14Ts)..(1+I,s)

G(s)H(s)=— ,. ,
s (1+T5)(1+T;s)...(1+T,5)

Here.
K, =lims’G(s)H(s)=K
10 .
Therefore.

A

=
Iz

Steady-state error and error constant for different types of input are summarized as follows.

Step input Ramp input Parabalic input
Type
Ks €ss Ky €ss Ka (=
Type0 K i 0 0
Ype o0 o0
IR 1+ X
T 1 0 K £ 0
vpe @ i 5
¥p %
i A
Type 2 0 0 e 0 K X




EFFECT OF POLE AND ZERO TO TRANSFER FUNCTION

(1) Addition of a pole to the Forward Path Transfer Function:-
(@  Increases the order of the system
(b)  Increases the overshoot
()  Reduces stability
(d) Increase rise time

()  Reduces bandwidth (ii) Addition of a pole to the Closed-Loop Transfer function:- (a)
Increases rise time

(b) Decreases overshoot (iii) Addition of a zero to the Closed-Loop
Transfer function:- (a) Decreases rise time

(b) Increases overshoot

(iv) Addition of a zero to the Forward path Transfer function:-

(a) Added zero far away from imaginary axis — Overshoot large & damping is very poor
(b) When zero moves to the right — Overshoot reduce & damping improves

(c) When zero moves closer to the origin — Overshoot increases & damping improves
PROPORTIONAL CONTROLLER

The proportional controller produces an output, which is proportional to error signal.




u(t) o e(t)
= u(t) = Kpe(t)
Apply Laplace transform on both the sides -
U(s) = KpE(s)

Ul(s)

Be) T




Therefore, the transfer function of the proportional controller is Kp. Where,
U(s) is the Laplace transform of the actuating signal u(t)
E(s) is the Laplace transform of the error signal e(t)

Kp is the proportionality constant

The block diagram of the unity negative feedback closed loop control system along with the proportional
controller is shown in the following figure.

E U
R(s) + (s) = (s) — C(s)

DERIVATIVE CONTROLLER

The derivative controller produces an output, which is derivative of the error signal.

de(t)
dt

u(t) = I(D

Apply Laplace transform on both sides.
U(s) = KpsE(s)

U(s)
E(s)

Therefore, the transfer function of the derivative controller is Kps Where, Kp is the derivative
constant.

- I(DS

The block diagram of the unity negative feedback closed loop control system along with the derivative
controller is shown in the following figure.




R(s) +

E(s)

U(s)

G(s)

C(s)




INTEGRAL CONTROLLER

The integral controller produces an output, which is integral of the error signal.

u(t) = Ky /.c(t)dt

Apply Laplace transform on both the sides -

i) = K.rf(s)
U(S) m K]
E(s) s

. . K
Therefore, the transfer function of the integral controller is TI

Where, K| is the integral constant.

The block diagram of the unity negative feedback closed loop control system along with the integral
controller is shown in the following figure.

£ ]
R(s) + (s) S (s) p— C(s)

The integral controller is used to decrease the steady state error.

PROPORTIONAL DERIVATIVE (PD) CONTROLLER

The proportional derivative controller produces an output, which is the combination of the outputs of
proportional and derivative controllers.




de(t)
dt

u(t) = Kpe(t) + Kp

Apply Laplace transform on both sides -
U(s) = (Kp + Kps)E(s)

Ul(s)
E(s)

= Kp+ Kps




Therefore, the transfer function of the proportional derivative controller is Kp+Kps.

The block diagram of the unity negative feedback closed loop control system along with the proportional
derivative controller is shown in the following figure.

U
R(s) +<E(s) e (s) p— C(s)

The proportional derivative controller is used to improve the stability of control system without affecting
the steady state error.

PROPORTIONAL INTEGRAL (PI) CONTROLLER

The proportional integral controller produces an output, which is the combination of outputs of the
proportional and integral controllers.

u(t) = Kpe(t) + K; / e(t)dt
Apply Laplace transform on both sides -
U(s) = (Kp -+ Ei) E(s)
s

Uls) _ . . Ki
=Kp+
E(s) s s

Therefore, the transfer function of proportional integral controller is K p + b

The proportional integral controller is used to decrease the steady state error without affecting the stability
of the control system.

PROPORTIONAL INTEGRAL DERIVATIVE (PID) CONTROLLER

The proportional integral derivative controller produces an output, which is the combination of the outputs
of proportional, integral and derivative controllers.




de(t)
dt

=Kt + K / e(t)dt + Kp

Apply Laplace transform on both sides -
Uls) = (Kp + & + KDs) E(s)

s

U(s)
E(s)

:I{P+£+KDS
s

Therefore, the transfer function of the proportional integral derivative controller
is Kp + Li-l' + Kps.




The block diagram of the unity negative feedback closed loop control system along with the proportional
integral derivative controller is shown in the following figure.

R(s) +<» E(s) > U(s) C(s)
Kp+T'+KDS_. G(s) |—e——




CHAPTER#3 ANALYSIS OF STABILITY BY ROOT LOCUS TECHNIQUE




STABILITY




A system is said to be stable, if its output is under control. Otherwise, it is said to be unstable. A stable
system produces a bounded output for a given bounded input.

The following figure shows the response of a stable system.
c(t)
A

=
0 t

This is the response of first order control system for unit step input. This response has the values between 0
and 1. So, it is bounded output. We know that the unit step signal has the value of one for all positive values
of tincluding zero. So, it is bounded input. Therefore, the first order control system is stable since both the
input and the output are bounded.

TYPES OF SYSTEMS BASED ON STABILITY

We can classify the systems based on stability as follows.

Absolutely stable system
Conditionally stable system
Marginally stable system

Absolutely Stable System

If the system is stable for all the range of system component values, then it is known as the absolutely
stable system. The open loop control system is absolutely stable if all the poles of the open loop transfer
function present in left half of ‘s* plane. Similarly, the closed loop control system is absolutely stable if all
the poles of the closed loop transfer function present in the left half of the ‘s’ plane.

Conditionally Stable System

If the system is stable for a certain range of system component values, then it is known as conditionally
stable system.

Marginally Stable System

If the system is stable by producing an output signal with constant amplitude and constant frequency of
oscillations for bounded input, then it is known as marginally stable system. The open loop control system
is marginally stable if any two poles of the open loop transfer function is present on the imaginary axis.
Similarly, the closed loop control system is marginally stable if any two poles of the closed loop transfer
function is present on the imaginary axis.




ROUTH-HURWITZ STABILITY CRITERION




Routh-Hurwitz stability criterion is having one necessary condition and one sufficient condition for stability.
If any control system doesn’t satisfy the necessary condition, then we can say that the control system is
unstable. But, if the control system satisfies the necessary condition, then it may or may not be stable. So,
the sufficient condition is helpful for knowing whether the control system is stable or not.

NECESSARY CONDITION FOR ROUTH-HURWITZ STABILITY

The necessary condition is that the coefficients of the characteristic polynomial should be positive. This
implies that all the roots of the characteristic equation should have negative real parts.

Consider the characteristic equation of the order ‘n’ is -

ags” +a1s" ! +azs™ +... tan_15° +ans’ =0

Note that, there should not be any term missing in the nt" order characteristic equation. This means that the
n'" order characteristic equation should not have any coefficient that is of zero value.

SUFFICIENT CONDITION FOR ROUTH-HURWITZ STABILITY

The sufficient condition is that all the elements of the first column of the Routh array should have the same
sign. This means that all the elements of the first column of the Routh array should be either positive or
negative.

ROUTH ARRAY METHOD

If all the roots of the characteristic equation exist to the left half of the ‘s’ plane, then the control system is
stable. If at least one root of the characteristic equation exists to the right half of the ‘s’ plane, then the
control system is unstable. So, we have to find the roots of the characteristic equation to know whether the
control system is stable or unstable. But, it is difficult to find the roots of the characteristic equation as order
increases.

So, to overcome this problem there we have the Routh array method. In this method, there is no need to
calculate the roots of the characteristic equation. First formulate the Routh table and find the number of the
sign changes in the first column of the Routh table. The number of sign changes in the first column of the
Routh table gives the number of roots of characteristic equation that exist in the right half of the ‘s’ plane
and the control system is unstable.

Follow this procedure for forming the Routh table.

[T Fill the first two rows of the Routh array with the coefficients of the characteristic polynomial as
mentioned in the table below. Start with the coefficient of sn and continue up to the coefficient of so.

[T Fill the remaining rows of the Routh array with the elements as mentioned in the table below. Continue
this process till you get the first column element of row so.

Note — If any row elements of the Routh table have some common factor, then you can divide the row
elements with that factor for the simplification will be easy.

The following table shows the Routh array of the n™ order characteristic polynomial.
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Example

Let us find the stability of the control system having characteristic equation,

s*+35° +3s2+25+1=0
Step 1 — Verify the necessary condition for the Routh-Hurwitz stability. All the coefficients

of the characteristic polynomial,

g4 +3s% +35% + 25 +1
are positive. So, the control system satisfies the necessary condition. Step 2 — Form
the Routh array for the given characteristic polynomial.

st 1 3 1
s 3 2
52 (3x3)-(2x1) _ 7 (3x1)—(0x1) _ 3
3 -3 3 TR
=
81 (%xﬁ)—(lx"})
M
3
— 5
e
s? 1

Step 3 — Verify the sufficient condition for the Routh-Hurwitz stability.




All the elements of the first column of the Routh array are positive. There is no sign change in the first

1+G(s)H(s) =0

We can represent G(s)H(s) as




column of the Routh array. So, the control system is stable.

SPECIAL CASES OF ROUTH ARRAY

We may come across two types of situations, while forming the Routh table. It is difficult to complete the
Routh table from these two situations.

The two special cases are —

[T The first element of any row of the Routh’s array is zero.
[ All the elements of any row of the Routh’s array are zero.

Let us now discuss how to overcome the difficulty in these two cases, one by one.

» First Element of any row of the Routh’s array is zero

If any row of the Routh’s array contains only the first element as zero and at least one of the remaining
elements have non-zero value, then replace the first element with a small positive integer, €. And then
continue the process of completing the Routh’s table. Now, find the number of sign changes in the first
column of the Routh’s table by substituting € tends to zero.

> All the Elements of any row of the Routh’s array are zero In this case, follow
these two steps —

[ Write the auxiliary equation, A(s) of the row, which is just above the row of zeros.

T Differentiate the auxiliary equation, A(s) with respect to s. fill the row of zeros with
these coefficients.

ROOT LOCUS

The Root locus is the locus of the roots of the characteristic equation by varying system gain K from zero
to infinity.

We know that, the characteristic equation of the closed loop control system is

Where,

2 K represents the multiplying factor




9 N(s) represents the numerator term having (factored) nt? order
polynomial of ‘s’

© D(s) represents the denominator term having (factored) mt" order
polynomial of ‘s’

Substitute, G(s)H(s) value in the characteristic equation.

N(s) _
D(s)

1+k 0

= D(s) + KN(s) =0
Casel - K=0
If K =0, then D(s) = 0.
That means, the closed loop poles are equal to open loop poles when K is zero.
Case2 - K=

Re-write the above characteristic equation as

1 N(s) 1 N(s)
K| — =1 —_ =0
(K+Mﬂ) K D)
Substitute, K = o0 in the above equation,
1 N{s) N(s)
=~ "De T oE NG

If K = oo, then N(s) = 0. It means the closed loop poles are equal to the open
loop zeros when K is infinity.




From above two cases, we can conclude that the root locus branches start at open loop poles and end at open
loop zeros.

ANGLE CONDITION AND MAGNITUDE CONDITION

The points on the root locus branches satisfy the angle condition. So, the angle condition is used to know

whether the point exist on root locus branch or not. We can find the value of K for the points on the root
locus branches by using magnitude condition. So, we can use the magnitude condition for the points, and
this satisfies the angle condition.

Characteristic equation of closed loop control system is
1 + G(as)H(s) O

> G(s)H (s) 1+ 5O

The phase angle of (=) H (=) 1=

0
£ G(s)H(s) = tan * (_T — (272 + 1)




The angle condition is the point at which the angle of the open loop transfer function is an odd multiple of




180°.
Magnitude of G(s)H(s) is —

|G (s) H(s)| = \,;""( 12 + 02 =1

The magnitude condition is that the point (which satisfied the angle condition) at which the magnitude of
the open loop transfer function is one.

THE ROOT LOCUS IS A GRAPHICAL REPRESENTATION IN S-DOMAIN AND IT IS
SYMMETRICAL ABOUT THE REAL AXIS. Because the open loop poles and zeros exist in the s-
domain having the values either as real or as complex conjugate pairs.

RULES FOR CONSTRUCTION OF ROOT LOCUS

Follow these rules for constructing a root locus.

Rule 1 — Locate the open loop poles and zeros in the‘s’ plane.

Rule 2 — Find the number of root locus branches.

We know that the root locus branches start at the open loop poles and end at open loop zeros. So, the number
of root locus branches N is equal to the number of finite open loop poles P or the number of finite open loop
zeros Z, whichever is greater.

Mathematically, we can write the number of root locus branches N as

N=P if P>Z
N=Z if P<Z
Rule 3 — Identify and draw the real axis root locus branches.

If the angle of the open loop transfer function at a point is an odd multiple of 180°, then that point is on the
root locus. If odd number of the open loop poles and zeros exist to the left side of a point on the real axis,
then that point is on the root locus branch. Therefore, the branch of points which satisfies this condition is
the real axis of the root locus branch.

Rule 4 — Find the centroid and the angle of asymptotes.

[T If P=Z, then all the root locus branches start at finite open loop poles and end at finite open loop zeros.

[T If P>Z, then Z number of root locus branches start at finite open loop poles and end at finite open loop
zeros and P—Z number of root locus branches start at finite open loop poles and end at infinite open loop
Zeros.

[T If P<Z , then P number of root locus branches start at finite open loop poles and end at finite open loop
zeros and Z—P number of root locus branches start at infinite open loop poles and end at finite open loop
zeros.

So, some of the root locus branches approach infinity, when P#Z. Asymptotes give the direction of these
root locus branches. The intersection point of asymptotes on the real axis is known as centroid.

We can calculate the centroid a by using this formula,




o 3" Real part of finite open loop poles —3 Real part of finite open loop zeros

P-Z
The formula for the angle of asymptotes 6 is

(2q + 1)180°
P-Z

8=

Where,




Rule 5 — Find the intersection points of root locus branches with an imaginary axis.

We can calculate the point at which the root locus branch intersects the imaginary axis and the value of K
at that point by using the Routh array method and special case (ii).

[T If all elements of any row of the Routh array are zero, then the root locus branch intersects the imaginary
axis and vice-versa.

[T Identify the row in such a way that if we make the first element as zero, then the elements of the entire
row are zero. Find the value of K for this combination.

[ Substitute this K value in the auxiliary equation. You will get the intersection point of the root locus
branch with an imaginary axis.

Rule 6 — Find Break-away and Break-in points.

[T If there exists a real axis root locus branch between two open loop poles, then there will be a break-
away point in between these two open loop poles.

[T If there exists a real axis root locus branch between two open loop zeros, then there will be a break-in
point in between these two open loop zeros.

Note — Break-away and break-in points exist only on the real axis root locus branches.
Follow these steps to find break-away and break-in points.

M Write K in terms of s from the characteristic equation 1+G(s)H(s)=0.

N Differentiate K with respect to s and make it equal to zero. Substitute these
values of s in the above equation.
M The values of s for which the K value is positive are the break points.

Rule 7 — Find the angle of departure and the angle of arrival.

The Angle of departure and the angle of arrival can be calculated at complex conjugate open loop poles and
complex conjugate open loop zeros respectively.




The formula fof the angle of departure ¢qis

¢a = 180" — ¢
The formula for the angle of arrival ¢, is

ba = 180° + ¢

Where,

6= dp—> ¢z




Example

o0s501

Centroid = 0 0p

3

8 = 60", 180" and 300",
The angle of asymptotes are




Let us now draw the root locus of the control system having open loop transfer function,
G(s)H(s) = —X

s(s+1)(s+5)
Step 1 — The given open loop transfer function has three poles at s =0, s = -1, s = -5. It doesn’t have any

zero. Therefore, the number of root locus branches is equal

to the number of poles of the open loop transfer function.
N=P=3

Root Locus Branch Root Locus Branch

L N

Vo X >

7\
's_ﬂ * C

Not a Root Locus Branch

The three poles are located are shown in the above figure. The line segment between s=—1, and s=0 is one
branch of root locus on real axis. And the other branch of the root locus on the real axis is the line segment
to the left of s=—5.

Step 2 — We will get the values of the centroid and the angle of asymptotes by using the given formulae.




Asymptote with 60%ngle

Asymptote with 180%ngle s

Asymptote with 300%ngle

v




Step 3 — Since two asymptotes have the angles of 60 and 300, two root locus branches intersect the
imaginary axis. By using the Routh array method and special case(ii), the root locus branches intersects the
jvB _  —ivE.

imaginary axis at and

There will be one break-away point on the real axis root locus branch between the poles s =—1 and s=0. By
following the procedure given for the calculation of break-away point, we will get it as s =—0.473.

Break away
points-0.472

o X
QY

EFFECTS OF ADDING OPEN LOOP POLES AND ZEROS ON ROOT LOCUS

The root locus can be shifted in‘s” plane by adding the open loop poles and the open loop zeros.

[T If we include a pole in the open loop transfer function, then some of root locus branches will move
towards right half of ‘s’ plane. Because of this, the damping ratio 6 decreases. Which implies, damped
frequency wd increases and the time domain specifications like delay time td, rise time tr and peak time
tp decrease. But, it effects the system stability.

[T If we include a zero in the open loop transfer function, then some of root locus branches will move
towards left half of ‘s’ plane. So, it will increase the control system stability. In this case, the damping
ratio 0 increases. Which implies, damped frequency wd decreases and the time domain specifications
like delay time td, rise time tr and peak time tp increase.

CHAPTER#4 EREQUENCY RESPONSE ANALYSIS




FREQUENCY RESPONSE




The response of a system can be partitioned into both the transient response and the steady state response.
We can find the transient response by using Fourier integrals. The steady state response of a system for an

input sinusoidal signal is known as the frequency response. In this chapter, we will focus only on the steady
state response.

If a sinusoidal signal is applied as an input to a Linear Time-Invariant (LTI) system, then it produces the
steady state output, which is also a sinusoidal signal. The input and output sinusoidal signals have the same
frequency, but different amplitudes and phase angles. Let the input signal be

r(t) = A sin(wpt)
The open loop transfer function will be —
G(s) = G(jw)
We can represent G(jw) in terms of magnitude and phase as shown below:.
G(jw) = |G(jw)| £G (juw)
Substitute, w = wy in the above equation.
G(jwo) = |G (jwo) | LG (jewo)
The output signal is
c(t) = A|G(jwo)| sin(wpt + LG (jwe))

5 The amplitude of the output sinusoidal signal is obtained by multiplying
the amplitude of the input sinusoidal signal and the magnitude of G(jw)
atw = wy.

5 The phase of the output sinusoidal signal is obtained by adding the
phase of the input sinusoidal signal and the phase of G(jw) at w = wy.

Where,
A is the amplitude of the input sinusoidal signal.

o is angular frequency of the input sinusoidal signal.

We can write, angular frequency ®0 as shown below. wo=2mnfo

Here, fo is the frequency of the input sinusoidal signal. Similarly, you can follow the same procedure for
closed loop control system.

FREQUENCY DOMAIN SPECIFICATIONS

The frequency domain specifications are

+ Resonant peak < Resonant frequency
+« Bandwidth.

Consider the transfer function of the second order closed control system as







C(s) Wi

T = —
O = )~ 571 260 iR

Substitute, s = jw in the above equation.

wi

(jw)? + 28wy, (jw) + wh

Wi

AT _ W
D)= —w? + 2j0ww, + Wi a ] e 20
n (.\),2, why

(%)@

Let, % = u Substitute this value in the above equation.

= T(jw) =

1
(1 —u?) + j(2du)

T(jw) =

Magnitude of T'(jw) is -

1
v (1 —u?)? + (2du)?

M = |T(jw) =

Phase of T(jw) is -

Resonant Frequency

It is the frequency at which the magnitude of the frequency response has peal
value for the first time. It is denoted by w, . At w = wy, the first derivate of the
magnitude of T'(jw) is zero.




Differentiate M with respect to .

dM 1 =2
o = 5[ —u)? +(260)°] 7 [2(1 — w?)(—2u) +2(26u) (20)]
dM 1 =
= —— = —5[1—u)? + (26w)*] 7 [4u(u® — 1 +26%)]
Substitute, v = u, and % == 0 in the above equation.

0= _% [(1—u2)? + (26u,)?] "3 [4u, (u? — 1+ 26%)]

= 4y, (u2 —1+25%2) =0
=u2—1+252=0

= u2 =1— 242

:rur:\'l-zd

r

Substitute, u, = :— in the above equation.

“r = 1287

Wn

> w =wnV1-24




Resonant Peak:

It is the peak (maximum) value of the magnitude of T(jw). It is denoted by Mr. At u=ur, the Magnitude of
T(jw) is -

M, = - :
\I,-"'(l u2)? + (26u,)?
Substitute, u, = V1 — 262 and 1 — u2 = 262 in the above equation.
M, -

\,,.r'"(252)2 + (26v1 — 282)2

=
26v'1 — 42

I

Resonant peak in frequency response corresponds to the peak overshoot in the time domain transient
response for certain values of damping ratio 3. So, the resonant peak and peak overshoot are correlated to
each other.

Bandwidth:

It is the range of frequencies over which, the magnitude of T(jw) drops to 70.7% from its zero frequency
value.




At w=0, the value of u will be zero. Substitute, u=0 in




M= 1 =1
V(1= 0%)2 4 (26(0))2

Therefore, the magnitude of T(jw) is one at w=0

At 3-dB frequency, the magnitude of T(jw) will be 70.7% of magnitude of T(jw)) at w=0
e, atw=wp, M =0.707(1) = 1

\/,E

Let, ug = 2

= 2= (1—2xz)% + (20)%2=

= z2+ (462 -2)z—1=0

— (462 — 2) = /(462 —2)2 + 4
== T = >

Consider only the positive value of x.

z=1—262 + \/’(2‘52 —1)2 4-1

e

=z =1— 262 + /(2 — 462 + 46%)

A o2
Substitute, x = uf = =
w? 7

— =1—26% + V(2 —46% + 46%)

Ln

= wp = i \/"1 — 252 - \/(2 — 452 + 46%)

Bandwidth wyin the frequency response is inversely proportional to the rise time tr in the time domain
transient response.

POLARPLOTS

Polar plot is a plot which can be drawn between magnitude and phase. Here, the magnitudes are represented
by normal values only.
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This graphThe polar form of G(jw)H (jw) is nes
Gjw)H(jw) = |G(jw) H (jw)| £G(jw) H (jw)

The Polar plot is a plot, which can be drawn between the magnitude and the
phase angle of G(jw)H (jw) by varying w from zero to . The polar graph
sheet is shown in the following figure.




represent the magnitudes and phase angles respectively. These angles are represented by positive values in
anti-clock wise direction. Similarly, we can represent angles with negative values in clockwise direction.
For example, the angle 270° in anti-clock wise direction is equal to the angle —90° in clockwise direction.

RULES FOR DRAWING POLAR PLOTS

Follow these rules for plotting the polar plots.

Substitute, s=jo in the open loop transfer function.

Write the expressions for magnitude and the phase of G(jo)H(jo)

Find the starting magnitude and the phase of G(jo)H(jo) by substituting ®=0. So, the polar plot starts
with this magnitude and the phase angle.

Find the ending magnitude and the phase of G(jo)H(jw) by substituting w=co So, the polar plot ends
with this magnitude and the phase angle.

Check whether the polar plot intersects the real axis, by making the imaginary term of G(jow)H(jo) equal
to zero and find the value(s) of .

Check whether the polar plot intersects the imaginary axis, by making real term of G(jo)H(jo) equal to
zero and find the value(s) of .

For drawing polar plot more clearly, find the magnitude and phase of G(jw)H(j®) by considering the
other value(s) of w.

Example:
Consider the open loop transfer function of a closed loop control system.




5

G(s)H(s) = s(s +1)(s + 2)




Let us draw the polar plot for this control system using the above rules
Step 1 — Substitute, s Jw in the open loop transfer function,

5

Gjw) H (jw)

Jw(jw 4+ 1) (Jw + 2)

The magnitude of the open loop transfer funcuon i1s
~
AL S R
w(VvVw?2 + 1) (Vw2 +4)
The phase angle of the open loop transfer function is
@ 90° tan Y w tan ! w
Frequency {rad/sec) Magnitude Phase angle{degrees)
] es] -0 or 270
Los] ] =270 or 30

So, the polar plot starts at (c0,~90°) and ends at (0,—270°). The first and the second terms within the brackets
indicate the magnitude and phase angle respectively.

Step 3 — Based on the starting and the ending polar co-ordinates, this polar plot will intersect the negative
real axis. The phase angle corresponding to the negative real axis is —180° or 180°. So, by equating the phase

angle of the open loop transfer function to either —180° or 180°, we will get the ® value as V2.

By substituting ®=\2 in the magnitude of the open loop transfer function, we will get M=0.83. Therefore,

the polar plot intersects the negative real axis when ®=\2 and the polar coordinate is (0.83,—180°).

So, we can draw the polar plot with the above information.

BODE PLOTS

The Bode plot or the Bode diagram consists of two plots — Magnitude plot

Phase plot A

In both the plgts, x-axis represents angular frequency (logarithmic scale). Whereas, yaxis represents the
magnitude (linear scale) of open loop transfer function in the magnitude plot and the phase angle (linear
scale) of the open loop transfer function in the phase plot.

The magnitude of the open loop transfer function in dB is -
M = 20 log |G (jw) H (jw)|

The phase angle of the open loop transfer function in degrees is -
¢ = £G(jw)H(jw)




Basic of Bode Plots:




The following table shows the slope, magnitude and the phase angle values of the terms present in the open
loop transfer function. This data is useful while drawing the Bode plots.

Type of G{jwIH{ jm) Slope(dB/dec) Magnitude Phase
term (dB) angle(degrees)
Constant K 0 20log K 1]
Zero at Jw 20 20logw 90
arigin
‘n' zeros (o)™ 20n 20 logw 90 n
at origin
Pole at % —20 —20logw —90 or 270
arigin
‘n' poles ﬁ —20n —20 1 logw —90 7 or 270
at arigin L
Simple 1+ jeor 20 0 forw 0 forw < %
1
=8O <7 90 forw = %
20 logwr
forw = %
Simple “iu -20 0 forw 0 forw < %
ole 1
P <7 ~90 or 270
~20 logwr forw> *
forw > }
Second 2 (1 = _E_ 40 40 log wy, 0 forw < wy
order " 2)&0) forw < wy, 90 forw = w,
derivative oy 20 log -
term 180 forw
2
(20wy) for > Wn
W= Wy
40 log w
forw > w,
Second —l—’ 40 ~40 log w,, —0 forw
order “"'(1:—3 forw < wy, < Wp
integral +1:‘:) ~20 log -90 forw
term —
(26uf) for = “n
W= Wy ~180 forw
~40logw  ~Un
forw > wy,
Case-1:
Consider the open loop transfer funcuon G(s)H(s) — K.

Magnitude AT

FPhase angle ¢

IfF X = 1, then magnitude
IfF K > 1, then magnitude
If K <

- 20 log K dB

= 0 degrees

is O dB,

will be positive.

1, then magnitude will be negative,

The following figure shows the corresponding Bode plot.




M (dB)
K > 1
20 log K |--———r———mmememme— e e —————
= 1
o log e
—~20log K |-~
0O < K <=1

o (degrees)
'S

0O < K < co

Y

log e




The magnitude plot is a horizontal line, which is independent of frequency. The 0 dB line itself - is the
magnitude plot when the value of K is one. For the positive values of K, the horizontal line will shift 20logK
dB above the 0 dB line. For the negative values of K, the horizontal line will shift 20logK dB below the 0
dB line. The Zero degrees line itself is the phase plot for all the positive values of K.

Case-2:

Consider the open loop transfer function G(s)H(s)= S
Magnitude M=20logo dB

Phase angle $=90°

At ©=0.1rad/sec, the magnitude is -20 dB.

At w=1rad/sec, the magnitude is 0 dB.

At =10 rad/sec, the magnitude is 20 dB.

The following figure shows the corresponding Bode plot.
M (dB)
A

1 /
>
0 yi 10 log w
=20

© (degrees)

ﬂl

90

\

o
log w




The magnitude plot is a line, which is having a slope of 20 dB/dec. This line started at ®=0.1rad/sec having

Magnitude = /1 (sp) ’

Phase angle =
¢ = tan~ wr degrees

1
w< =
For T

=

e D
For




a magnitude of -20 dB and it continues on the same slope. It is touching 0 dB line at =1 rad/sec. In this
case, the phase plot is 90° line.

Case-3:
Consider the open loop transfer function G(s) H(s)=1+st.

, the magnitude is 0 dB and phase angle is O degrees.

, the magnitude is 20logwt dB and phase angle is 90°.
The following figure shows the corresponding Bode plot

M (dB)
A 2
20 + QS’\
D
=
o 1 10 log w
T E3
o (degrees)
A
90
o =
kL 10 log @
T T

The magnitude plot is having magnitude of 0 dB up to =1t rad/sec. From w=11 rad/sec, it is having a slope
of 20 dB/decade. In this case, the phase plot is having phase angle of 0 degrees up to =1t rad/sec and from
here, it is having phase angle of 90°. This Bode plot is called the asymptotic Bode plot. As the magnitude
and the phase plots are represented with straight lines, the Exact Bode plots resemble the asymptotic Bode
plots. The only difference is that the Exact Bode plots will have simple curves instead of straight lines.

RULES FOR CONSTRUCTION OF BODE PLOTS:

Follow these rules while constructing a Bode plot.

» Represent the open loop transfer function in the standard time constant form.
» Substitute, s=jo in the above equation.
* Find the corner frequencies and arrange them in ascending order.

« Consider the starting frequency of the Bode plot as 1/10" of the minimum corner frequency or 0.1
rad/sec whichever is smaller value and draw the Bode plot upto 10 times maximum corner frequency.




» Draw the magnitude plots for each term and combine these plots properly.




» Draw the phase plots for each term and combine these plots properly.
STABILITY ANALYSIS USING BODE PLOTS

From the Bode plots, we can say whether the control system is stable, marginally stable or unstable based
on the values of these parameters.

« Gain cross over frequency and phase cross over frequency
» Gain margin and phase margin

Phase Cross over Frequency:
The frequency at which the phase plot is having the phase of -180° is known as phase cross over frequency.
It is denoted by wpc. The unit of phase cross over frequency is rad/sec.

Gain Cross over Frequency:
The frequency at which the magnitude plot is having the magnitude of zero dB is known as gain cross over
frequency. It is denoted by wgc. The unit of gain cross over frequency is rad/sec.

The stability of the control system based on the relation between the phase cross over frequency and the
gain cross over frequency is listed below.

» If'the phase cross over frequency mpc is greater than the gain cross over frequency wgc, then the control
system is stable.

» If the phase cross over frequency wpc iS equal to the gain cross over frequency wgc, then the control
system is marginally stable.

» If the phase cross over frequency wpc is less than the gain cross over frequency wgc, then the control
system is unstable.

Gain Margin:
Gain margin GM is equal to negative of the magnitude in dB at phase cross over frequency.
GM-= - 20log(Mpc)
Where, Mpc is the magnitude at phase cross over frequency. The unit of gain margin (GM) is dB.
Phase Margin:
The formula for phase margin PM is PM=180%¢pgc Where, ¢qc is the phase angle at gain cross over
frequency. The unit of phase margin is degrees.

****The stability of the control system based on the relation between gain margin and phase margin is listed
below.

 If both the gain margin GM and the phase margin PM are positive, then the control system is stable.

» If both the gain margin GM and the phase margin PM are equal to zero, then the control system is
marginally stable.

* If the gain margin GM and / or the phase margin PM are/is negative, then the control system is unstable.




) -Arg (1+j0.1w) -tan™ -Arg (1 +j0.001w) -tan’ Resultant
0.1w) " (0,001 )

50 -78.6° -2.86° - 81.46°
100 - 84.2° -5.7° - 90°
150 - 86.2° -8.5° - 94°
200 - 87.13° -11.3° - 98°
500 - 88.85° -26.56° -115.4°
800 - 89.28° - 38.65° -127.93°




1000

-89.48°

-45°

-134.42°




Example: Sketch the Bode plot for the Transfer function




= 1000
G(s) (1+0.1s5)(1+0.001s)

Determine the a) Phase Margin
b) Gain Margin
c) Stability of the System

Solution: Step-1 Put s =jo
= 1000

G(jo) (1401w )(14/0.001w)
The given transfer function is of type '0’ system. Therefore the initial slope of the Bode plots 0 db/decade.
The starting point is given by.

20 log10 K = 20 log10 1000 = 60 db

Corner frequencies rad/sec.

rad/sec.

Step 2 : Mark the starting point 60 db on y-axis and draw a line of slop 0 db/decade up to first corner
frequency.

Step 3 : From first corner frequency to second corner frequency draw a line with slope (0 — 20) = -20
db/decade).

Step 4 : From second corner frequency to next corner frequency (if given) draw a line having the slope -20
+ (-20) = -40 db/decade.

Step 5 : The magnitude plot is complete and now draw the phase plot by calculating the phase at different
frequencies (as given in table).

Step 6: From the bode plot

From the point of intersection of magnitude curve with 0 db axis draw a line on phase curve. This line cuts
the phase curve at - 154°

P.M = -154-(-180)
= +26°
Step 7: Gain margin G.M =
Since, P.M = + 26° and gain margin =oo, the system is inherently stable.

2000 -89.72° - 63.43° -153.15°
3000 - 89.8° - 71.56° -161.36°
5000 - 89.88° - 78.69° -168.57°

8000 - 89.92° -82.87° -172.79°
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CLOSED LOOP FREQUENCY RESPONSE
G(s)

C(s)
Consider transfer oo
function R(s) 1OG(S)H (s)

For unity feedback H(s) =1




ce)d  G(s)
g

Rs) 1UG(s)




Put s=jo

|
R(jH) 1Ha(jb)




cn_G6()

From figure
(_7; = G(jo)
_Q.
OA = -1
- .
25 = op - 04 = G(jw) - (- 1)
._.)
AB

= 1+ G(jw)
From above equation

)
—
—
-
=]
~—r
-
= |
-

AB
-y
Cljw) _ LO0B -L—r_()
[Riw) = 5 ~ @
/ AB

ICQE;(:); = M(w)e’o'ey

where M(jo) is the magnitude and ¢ (®) =r -8

Frequency response consists of 2 parts: (1) magnitude (2) phase angle. Both can be plotted against different
values of ®.




CHAPTER#5 NYQUIST PLOT




NYQUIST PLOT

Nyquist plots are the continuation of polar plots for finding the stability of the closed loop control systems
by varying ® from —oo to . That means, Nyquist plots are used to draw the complete frequency response
of the open loop transfer function.

NYQUIST STABILITY CRITERION

The Nyquist stability criterion works on the principle of argument. It states that if there are P poles and Z

zeros are enclosed by the ‘s’ plane closed path, then the corresponding G(s)H(s) plane must encircle the

origin P—Z times. So, we can write the number of encirclements N as, N=P—Z

% If the enclosed‘s’ plane closed path contains only poles, then the direction of the encirclement in the
G(s)H(s) plane will be opposite to the direction of the enclosed closed path in the ‘s’ plane.

¢ If the enclosed‘s’ plane closed path contains only zeros, then the direction of the encirclement in the
G(s)H(s) plane will be in the same direction as that of the enclosed closed path in the ‘s’ plane.

Let us now apply the principle of argument to the entire right half of the‘s’ plane by selecting it as a closed

path. This selected path is called the Nyquist contour.

We know that the closed loop control system is stable if all the poles of the closed loop transfer function are
in the left half of the‘s’ plane. So, the poles of the closed loop transfer function are nothing but the roots of
the characteristic equation. As the order of the characteristic equation increases, it is difficult to find the
roots. So, let us correlate these roots of the characteristic equation as follows.

» The Poles of the characteristic equation are same as that of the poles of the open loop transfer function.
» The zeros of the characteristic equation are same as that of the poles of the closed loop transfer function.

We know that the open loop control system is stable if there is no open loop pole in the right half of the ‘s’
plane. i.e. P=0=N=-Z7

We know that the closed loop control system is stable if there is no closed loop pole in the right half of the
‘s’ plane. i.e. Z=0=N=P

Nyquist stability criterion states the number of encirclements about the critical point (1+j0) must be equal
to the poles of characteristic equation, which is nothing but the poles of the open loop transfer function in
the right half of the ‘s’ plane. The shift in origin to (1+j0) gives the characteristic equation plane.

RULES FOR DRAWING NYQUIST PLOTS

Follow these rules for plotting the Nyquist plots.




Locate the poles and zeros of open loop transfer function G(s)H(s) in ‘s’ plane.




* Draw the polar plot by varying o from zero to infinity. If pole or zero present at s = 0, then varying ®
from 0+ to infinity for drawing polar plot.

* Draw the mirror image of above polar plot for values of ® ranging from —o to zero (0~ if any pole or
zero present at s=0).

» The number of infinite radius half circles will be equal to the number of poles or zeros at origin. The
infinite radius half circle will start at the point where the mirror image of the polar plot ends. And this
infinite radius half circle will end at the point where the polar plot starts.

After drawing the Nyquist plot, we can find the stability of the closed loop control system using the Nyquist
stability criterion. If the critical point (-1+j0) lies outside the encirclement, then the closed loop control

system is absolutely stable.

STABILITY ANALYSIS USING NYQUIST PLOTS

From the Nyquist plots, we can identify whether the control system is stable, marginally stable or unstable
based on the values of these parameters.

» Gain cross over frequency and phase cross over frequency
+ Gain margin and phase margin

Phase Cross over Frequency
The frequency at which the Nyquist plot intersects the negative real axis (phase angle is 180°) is known as

the phase cross over frequency. It is denoted by wpc.

Gain Cross over Frequency
The frequency at which the Nyquist plot is having the magnitude of one is known as the gain cross over
frequency. It is denoted by mgc.

The stability of the control system based on the relation between phase cross over frequency and gain cross
over frequency is listed below.

K/

¢ If the phase cross over frequency wpc is greater than the gain cross over frequency wgc, then the control
system is stable.

K/
L X4

If the phase cross over frequency wpc is equal to the gain cross over frequency wgc, then the control

system is marginally stable.

+» If phase cross over frequency mpc is less than gain cross over frequency wgc, then the control system is
unstable.

Gain Margin

The gain margin GM is equal to the reciprocal of the magnitude of the Nyquist plot at the phase cross over

frequency.




)
I(ZSIDI I




GM = !

M,

Where, Mpc is the magnitude in normal scale at the phase cross over frequency.




Phase Margin

The phase margin PM is equal to the sum of 180° and the phase angle at the gain cross over frequency.
PM=180%¢¢c Where, ¢ is the phase angle at the

gain cross over frequency.

The stability of the control system based on the relation between the gain margin and the phase margin is
listed below.

If the gain margin GM is greater than one and the phase margin PM is positive, then the control system
is stable.

If the gain margin GMs equal to one and the phase margin PM is zero degrees, then the control system
Is marginally stable.

If the gain margin GM is less than one and / or the phase margin PM is negative, then the control system
is unstable.

Example:- Draw the nyquist plot and assess the stability of the closed loop system whose open

K
loop transfer function is G(s) H(s) =
S
GU®H(jo)=—X K- e
(2 120)
- KQ-j20) 2k K

a 2——E—j >
JOU+407)  1+4a?  o(1+40?)

Along the segment (C1) of the Nyquist contour on the je-axis, s varies from —jeo t0 +joo.

AO="" .

Gjm)H(jw) = -0 + jO
so=0,

G(j)H(jw) = 2K + jeo
po=0%, _

G(j@)H(jo) = 2K - joo
At = oo,

G(jw)H(jw) = —0 — jO




Th InﬁmteSImally small semicircular indent around the pole at the origin of Figure

eprcsented by s= Eej (6 varying from —7/2° through 0° to +7/2°) maps into
f

Lt [K/(eefe)(Ze el + D] = Lt Kleel® = 14t (Kle)ed8 = coe 70
e—0 €—0 €0
gvaries from +90° — 0° — —90°. Thus, the infinitesimal semi-circular indent around the
iain of the s-plane maps into a semicircular arc of infinite radius in G(s)H(s) plane extending,
fom +90° through 0° to —90°.
The infinite semicircular arc of the Nyquist contour (segment C,) of Figure

epresented by 5= gej ? (¢ varying from +90° through 0° to —90°) is mapped into
— o0

Lt [K/ARe/?)(2Re/® + 1)] = Lt K/(2R2e2%) = 0e72¢

R—oo R—>e
that s, the origin of the G(s)H(s) plane. The G(s)H(s) locus thus turns at the origin with zero
ndius from —180° through 0° to +180°.

m has no poles in the right-half of the g- plane, ; .

on, for the closed-loop system to be stable, 1p, < &P -:_ f,, "
cle the (-1 + j0) point. Since the actyg] \‘/ : i

le the (=1 + j0) point, the closed-loop systery i ‘f,

The gwen open-loop syste
per the Nyquist stability criteri
G(jw)H(jw) must not encirc
Figure 8.11(b) does not encirc

.J,'d.'_

. w=0 A
40 Rej¢ 2K + jeo ks
Joo R—
C,
Cl“
Jjo' . ,
jO' (02 —l +_]0
jo .
€e
e >0
* w=0"
2K — joo
—jw

EFFECT OF ADDITION OF POLES & ZEROS TO G(s)H(s) ON THE SHAPE OF
NYQUIST PLOT

a) Addition of poles at s=0:- It will affect the stability of the closed loop system adversely.
A system that has a loop transfer function with more than one pole at s=0 is likely to be
unstable or difficult to stabilize.

b) Addition of finite non zero pole: - It shifts the phase of nyqui st plot by -90 at @= co.
The stability is adversely affected.

) Addition of a Zero: - The effect of addition of zero is to rotate the nyquist plot by 90 in
the counter clockwise direction without effecting the value at ® = 0. So it has the effect
of reducing the overshoot & the general effect of stabilization.




CONSTANT MAGNITUDE CIRCLE (M- CIRCLE)

—— M? M?
XAy =2 —x= =
l—AM- I_LW_
2
2
[IM MZJ add in both sides
M2 M2 Y M2 M2 Y
2,42 2% s - 3] o
PRV oM ) T Tl
2
M? 5 M? M*
X= + —0 = +
( l—MZJ =07 =153p (1-M?)?

M2 2 . MZ
[x—l—Mz) +(y-0) =—(1—M2)2

a

\
M 5 .0 ‘ and radius

The above equation represents a fanuly of circles with its center at

M ‘
1-M?*




GUw)

M(jo)=
Uo) 1+G(jw)

G(jo)=x+jy

|.M(j('_))| = \/(1‘ ‘:;;J—.v:

M+ + My =x2+)?

If M = 1, then from the above equation we obtain X = -1/2.This is the equation of a straight line parallel to
the Y-axis and passing through the point (-1/2, 0).

2A-MH+1-M>)y* -2M2%x=M?

Divide both the sides by (1-M?)

The constant M locii for different value of M. It is clear that:
i. The locii are symmetrical wrt to M= 1

ii.  The M-circles for M>1 are on the left side of the line M=1 and for M<1 the constant M- circles are on
the right side of the line M =1.




M=1.2

Ly




CONSTANT PHASE CIRCLE (N- CIRCLE):

JG( i
IM=a= —”G(ﬂo)
L1+ G(jo)
a=tan'l"—'—tan‘l"—'
X 1+x
N =tan tan'xl—-tan'l‘—.
\ X 1+x)
tan. A —tan B
tand oy e P,
1+tan Atan B
Here, tan(o))=N
— Yy .
N'= x2+x+y2 ;oor N2+x+y)=y
x2+x+y2—% =0

1 1
Add 7t W to both sides, we get

x2+x+y2—l+l . 1 L

t—— = —
N 4 @N)* =4 @2N)y
) 1Y 1. 1
or (x+1/2) + y—m =Z+W
(
. : ' —— Y. ¥ .
The above equation represents a famuly of circles with 1ts center at (— ST ) and radius

It is observed that

a) The centre is lying always at a distance x=-1/2 and y depends upon the phase shift.
b) All the circles passes through -1 as well as 0.




c¢r Increase

a =— 1007




NICHOLS CHART

» The chart consisting of constant-magnitude loci and constant phase-angle loci in the log- magnitude
versus phase diagram is called Nichols chart.

» The critical point (-1+j0) is mapped to the Nichols chart as the point (0 dB, 180degree). The Nichols
chart contains curves of constant closed-loop magnitude and phase angle.

« The designer can graphically determine the phase margin, gain margin, resonant peak magnitude,
resonant peak frequency, and bandwidth of the closed loops system from the plot of the open-loop locus.

» The Nichols chart is symmetric about -180 degree axis. The constant-magnitude loci and constant phase-
angle loci repeat for every 360 degree, and there is a symmetry at every 180 degree. The constant-
magnitude loci are centred about the critical point (0 dB, -180 degree).

» The intersection of the open-loop frequency response curve and the constant-magnitude loci and
constant phase-angle loci give the values of the magnitude and the phase angle of the closed loop
frequency response at each frequency point.

+ If the open-loop frequency response curve does not intersect the constant-magnitude loci but is tangent
to it, then the resonant peak value of the closed-loop frequency response is given by that loci. The
resonant peak frequency is given by the frequency at the point of tangency.

» The phase crossover point is the point where the open-loop locus intersects the -180 degree axis, and
the gain crossover point is the point where the locus intersects the 0 dB axis.

» The phase margin is the distance (measured in degrees) between the gain crossover point and the critical
point (0 dB, -180 degrees).

» The gain margin is the distance (in decibels) between the phase crossover point and the critical point.
The frequency at the intersection of the open-loop locus and the -3 dB locus gives the bandwidth.
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